Abstract:
Methods of forming a barrier layer on a substrate to form a halogen-free multi-layer construction configured to increase the barrier properties of the substrate are described. The barrier layer can reduce the oxygen transmission rate through the construction and can reduce the amount of air on one side of the construction. The methods include dissolving a highly amorphous vinyl alcohol polymer in a solvent to form a solution and applying the solution to the substrate. The solution is dried to form a barrier layer on the substrate. The barrier layer is continuous, relatively thin, and has a consistent thickness throughout the barrier layer, yet provides improved barrier properties. The methods can include using water-impermeable interior and exterior layers for preventing liquid water and water vapor from negatively affecting the functioning of the barrier layer, and an adhesive layer for reducing flex cracking failure of the barrier layer.
Abstract:
The invention relates to a layer structure comprising a substrate layer and a layer, which comprises a plurality of silicon oxide particles, wherein said silicon oxide particles have a positively charged surface (a PCS layer), which PCS layer is at least partially superimposed to the substrate layer and wherein the refractive index of the PCS layer is less than 1.2, a process for preparing the layer structure having a substrate and a PCS layer, a layer structure obtainable by the process, an optical device comprising the layer structure and the use of a PCS layer.
Abstract:
In some embodiments, the present disclosure provides methods for fabricating carbon nanotube films. Such methods generally comprise: (i) suspending carbon nanotubes in a superacid (e.g. chloro sulfonic acid) to form a dispersed carbon nanotube-superacid solution, wherein the carbon nanotubes have substantially exposed sidewalls in the carbon nanotube-superacid solution; (ii) applying the dispersed carbon nanotube-superacid solution onto a surface to form a carbon nanotube film; and (iii) removing the superacid. Desirably, such methods occur without the utilization of carbon nanotube wrapping molecules or sonication. Further embodiments of the present disclosure pertain to carbon nanotube films that are fabricated in accordance with the methods of the present disclosure. Such carbon nanotube films comprise a plurality of carbon nanotubes that are dispersed and individualized. Additional embodiments of the present disclosure pertain to macroscopic objects comprising the carbon nanotube films made in accordance with the methods of the present disclosure described supra.
Abstract:
The present disclosure describes a protective coating for a low index material, and a process for preparing a protected low index material. The protective coating partially penetrates the pores of a low index material, providing a seal protecting the pores, and can strengthen the construction by forming a gradient in properties of the protected low index material. The present disclosure further provides a diffusing low index optical element having a protected low index material and a diffusing layer disposed on the low index material.
Abstract:
Disclosed are a graphene-ceramic hybrid coating layer formed from a graphene-ceramic hybrid sol solution including graphene (RGO: reduced graphene oxide) and a ceramic sol, wherein the graphene content in the graphene-ceramic hybrid coating layer is about 0.001 wt % to about 1.8 wt % based on the total weight of the graphene-ceramic hybrid coating layer, and a method for preparing the same.
Abstract:
The present invention relates to a panel, in particular a wall, ceiling or floor panel, comprising a carrier layer made of a plastic material and a priming coat, wherein the priming coat comprises thereon an imprinted decorative pattern. Furthermore, the present invention relates to a method for manufacturing such a panel and a usage of a specific primer in such a panel.
Abstract:
The present invention relates to a device 10 and a method for curtain-coating of panel-shaped components 60 as well as components which have been manufactured by such a method. The device comprises a device 40 for generating a liquid curtain 42 of coating material, an input transport device 20 and an output transport device 30, wherein the output transport device 30 and/or the input transport device 20 can be height-adjusted.
Abstract:
A device for producing a coated steel sheet includes: a blowing-off unit which sprays a gas onto and remove an excessive coating that accumulates along a side edge of a steel sheet that threads along one direction; and a coating-collection unit which collects the excessive coating removed by the blowing-off unit. The blowing-off unit includes a spray nozzle and a gas supply member. The coating-collection unit includes a duct and a coating container. In a case where the duct is seen in a plan view, an outlet thereof is disposed to fit in and overlap an inside of an opening of the coating container, and in a case where the duct is seen in a side view, a gap is provided between the outlet and the opening of the coating container.
Abstract:
A system and process is disclosed for binding particles to a carrier material in an isolated relationship for use in composite fabrication. A slurry comprising particles dispersed in fluid is created in particle suspension tanks, deposited as a uniform layer and filtered using reduced pressure applied to a filter belt to leave behind isolated particles, the reduced pressure further acting to overcome electrostatic and other forces of attraction between the particles until they can be permanently bound to the carrier with a binder or adhesive and collected on a take-up roll.
Abstract:
A free radical curable liquid for inkjet printing of food packaging materials includes no initiator or otherwise one or more initiators selected from the group consisting of non-polymeric di- or multifunctional initiators, oligomeric initiators, polymeric initiators, and polymerizable initiators; wherein the polymerizable composition of the liquid consists of: a) 25-100 wt % of one or more polymerizable compounds A having at least one acrylate group G1 and at least one second ethylenically unsaturated polymerizable functional group G2 different from the group G1; b) 0-55 wt % of one or more polymerizable compounds B selected from the group consisting of monofunctional acrylates and difunctional acrylates; and c) 0-55 wt % of one or more polymerizable compounds C selected from the group consisting of trifunctional acrylates, tetrafunctional acrylates, pentafunctional acrylates and hexafunctional acrylates.