Abstract:
Methods for fastening or coupling dissimilar materials to each other may include providing a first component with a first through hole and a second component with a second through hole that is at least partly aligned with the first through hole. A mixture including a first material and a second material may be injected into the aligned through holes of the first component and the second component. The mixture of the first material and the second material may expand in the through holes, e.g., due to a chemical reaction, thereby connecting the first component and the second component together.
Abstract:
Temperature control systems and methods can be designed for controlling the interior climate of a vehicle or other the climate of another desired region. The temperature control system for a vehicle can have a thermoelectric system providing heating and/or cooling, including supplemental heating and/or cooling. The thermoelectric system can transfer thermal energy between a working fluid, such as liquid coolant, and comfort air upon application of electric current of a selected polarity. The thermoelectric system can supplement or replace the heat provided from an internal combustion engine or other primary heat source. The thermoelectric system can also supplement or replace cold energy provided from a compressor-based refrigeration system or other primary cold energy source.
Abstract:
A method for controlling a superheat degree of a vehicle air-conditioning system, and a vehicle air-conditioning system are provided. The method comprises: acquiring an actual superheat degree in real time, a preset superheat degree and a feed-forward information which influences a change of the actual superheat degree; and adjusting an opening degree of an electronic expansion valve in real time according to the actual superheat degree, the preset superheat degree and the feed-forward information that are acquired, so as to control the superheat degree of the vehicle air-conditioning system.
Abstract:
Systems and methods for providing heat to a passenger cabin of a hybrid vehicle that includes an internal combustion engine are presented. The systems and methods may selectively operate the internal combustion engine with one or more engine cylinders deactivated and may selectively flow coolant to one or more cylinders to improve passenger cabin heating in response to a request for passenger cabin heat.
Abstract:
In order to shift a rotation angle of a rotor to a region of a normal mode (for example, a region c) from a region of a heater cut mode (for example, a region e), the rotation angle needs to pass through a region where a flow rate of a refrigerant which is caused to flow through all branch channels becomes zero (a region d). When the refrigerant has a high temperature, there is a possibility of the refrigerant being not cooled, and boiling. Therefore, when a request to switch a normal mode and a heater cut mode is issued, permission/non-permission of switch of the mode is determined by comparison of a temperature of the refrigerant detected by the temperature sensor 26 and an upper limit temperature of the refrigerant.
Abstract:
A vehicle air conditioning device has an air-conditioning unit including a temperature regulation unit having an evaporator and a blower unit including a blower. The blower unit is offset to a side of the temperature regulation unit. A deflection guide to deflect a flow of air is provided upstream of the evaporator in a flow of air flowing into an inflow plane of the evaporator from the blower. The deflection guide has a plate-like defection portion inclined with respect to the inflow plane, and a support portion supporting the deflection portion by extending from the blower unit. A gap is provided between the support portion and the evaporator. Air that has collided with the deflection portion is changed in flow direction to head for the blower side of the inflow plane.
Abstract:
A cooling medium circulating apparatus comprising a first flow path configured to circulate a cooling medium, a second flow path through configured to circulate the cooling medium, and a flow path switchover unit configured to connect or disconnect between the first flow path and the second flow path, wherein a prescribed cycle, a connecting period and a disconnecting period is set, the connecting period being a connecting period between the first flow path and the second flow path in the said prescribed cycle, the disconnecting period being a disconnecting period between the first flow path and the second flow path in the said prescribed cycle, whereby the flow path switchover unit is controlled on the basis of the connecting period and the disconnecting period, and the prescribed cycle is made shorter as a temperature difference between a temperature of the cooling medium flowing through the first flow path and a temperature of the cooling medium flowing through the second flow path is larger.
Abstract:
A heating system for a hybrid vehicle may include a first heating line connecting an engine, having a temperature which is controlled through water-cooling, to a heater core that is heated using a heat generated from the engine, a second heating line allowing for heat exchange between various electronic devices and an auxiliary radiator controlling the temperatures of the various electronic devices, a branch line connected to the first heating line and the second heating line and exchanging heat therebetween, a plurality of valves provided on each of the first heating line, the second heating line, and the branch line, and a controller controlling each valve.
Abstract:
The present invention makes it possible to integrate and control in one circuit the systems, such as electric power components, a driving motor, a stack, and an AC condenser which have the maximum enthalpy under similar operational temperature and use conditions, by using an integrated radiator. Therefore, it is possible to minimize air-through resistance of the radiator for cooling the stack and the electric power components and ensure smooth and stable cooling performance of the stack, electric power components, and AC condenser while improving fuel efficiency by reducing the condensation pressure of the air conditioner. Further, it is possible to improve cooling efficiency by non-repeatedly arranging heat exchangers, and reduce the weight of a vehicle, volume of the parts, and the manufacturing cost, by avoiding using too many parts, such as a radiator, a water pump, and a reservoir tank.
Abstract:
Certain disclosed embodiments pertain to controlling temperature in a passenger compartment of a vehicle. For example, a temperature control system (TCS) can include an air channel configured to deliver airflow to the passenger compartment of the vehicle. The TCS can include a one thermal energy source and a heat transfer device connected to the air channel. A first fluid circuit can circulate coolant to the thermal energy source and a thermoelectric device (TED). A second fluid circuit can circulate coolant to the TED and the heat transfer device. A bypass circuit can connect the thermal energy source to the heat transfer device. An actuator can cause coolant to circulate selectively in either the bypass circuit or the first fluid circuit and the second fluid circuit. A control device can operate the actuator when it is determined that the thermal energy source is ready to provide heat to the airflow.