Abstract:
In a prior art reactor set up dense aggregates of microorganisms are formed, typically in or embedded in an extracellular matrix. Such may relate to granules, to sphere like entities having a higher viscosity than water, globules, a biofilm, etc. The dense aggregates comprise extracellular polymeric substances, or biopolymers, in particular linear polysaccharides. The present invention is in the field of extraction of a biopolymer from a granular sludge, a biopolymer obtained by such method, and a use of such method.
Abstract:
Methods and systems for reducing a redox active contaminant in a waste stream in a waste treatment system involve performing a unit process of the waste treatment system by contacting redox active contaminant in the waste stream with oxyhydrogen-rich gas generated on-site by an oxyhydrogen gas generator that implements water dissociation technology. The oxyhydrogen gas generator involves applying a pulsed electrical signal to a series of closely spaced electrodes that are submerged in the waste stream to produce oxyhydrogen-rich gas from a water component of the waste stream. Operation of the oxyhydrogen gas generator in the waste stream may accomplish one or more unit processes for waste treatment, such as oxidation, stripping, floatation, disinfection, conditioning, stabilization, thickening, and dewatering, among others.
Abstract:
A fluid treatment apparatus for treating a target fluid is provided. The fluid treatment apparatus includes a cylindrical reactor and one or more catalyst members each having a rod-like or plate-like shape extending in a longitudinal direction within the reactor. The cylindrical reactor decomposes an organic substance contained in a mixed fluid of the target fluid with an oxidant by an oxidation reaction under heat and pressure. The cylindrical reactor has an introduction port on one end and a discharge port on the other end. An upstream end surface, relative to a direction of flow of the target fluid, of each of the catalyst members is located in a downstream vicinity of or upstream from an inflow position where the target fluid flows into the reactor through the introduction port. Each of the catalyst members is suspended with the upstream end surface being fixed.
Abstract:
A process for treatment of municipal wastewater plant sludge to the criteria of Class A biosolids. The process uses hydrogen peroxide and thermo-oxidation to reduce volatile suspended solids to meet the criteria. On a batch basis, waste activated sludge is introduced into a reactor; the concentration of the waste activated sludge is adjusted to about 1.5% total suspended solids with secondary effluent, if necessary; the reactor is mixed; the reactor is pre-heated to an operating temperature in a range of about 65° C. to about 90° C.; subsequently, a 50% solution of laboratory grade hydrogen peroxide is introduced into the bottom of the reactor; and the contents are heated for at least 4 hours.
Abstract:
Hydrothermal oxidation of organic compounds, optionally with oxidizable inorganic compounds, is contained in an aqueous effluent. The aqueous effluent is injected within a tubular reactor and brought to supercritical pressure, and temperature is increased to a supercritical temperature, without any intermediate decrease in temperature, by introducing sufficient amounts of oxidizing agent within the tubular for totally oxidizing the organic compounds, and optionally for partly oxidizing oxidizable inorganic compounds. The oxidizing agent is introduced in a fractionated way in several points increasingly located downstream, and the composition and/or the concentration of the organic compounds and/or oxidizable organic compounds within the effluent to be treated varies over time. Further, upstream from the tubular reactor where oxidation is carried out, the effluent's total chemical oxygen demand of the effluent to be treated is measured and monitored at more than 120 grams/liter (g/L) and less than 250 g/L prior to injecting the tubular reactor.
Abstract:
This invention is directed to systems, devices and methods for treating organic-containing sludges and converting such sludges to high value fertilizers containing both inorganic and organic fertilizer components, which creates an inorganically-augmented bioorganic fertilizer. The invention describes methods to create a thixotropic or paste-like material via the application of mixing energy to the organic sludge followed by an alkaline treatment and a subsequent ammoniation. The invention further describes a method to increase the plant nutrient content in the organic containing product to a level which permits the finished granular fertilizer product to compete in the commercial agricultural fertilizer marketplace. Further, the invention reduces odors associated with said organic-containing sludges.
Abstract:
A cell design for systems of mediated electrochemical oxidation (MEO) of materials includes inactive surface coatings, such as polyvinylidene fluoride, polypropylene, ethylene-chlorotrifluoroethylene and polytetrafluoroethylene polymers or a glass glaze or metallic oxide, on all interior surfaces of the electrochemical cell to prevent . A further cell design for systems of mediated electrochemical oxidation (MEO) included conduits for connecting plural catholyte chambers or for connecting plural anolyte chambers which are embedded within walls of a molded unibody constructed box and slots for parallel arrangement of membranes and porous electrodes.
Abstract:
This invention relates to a method of treating waste water produced during the nitration of compounds, which includes an appropriate pretreatment process and a vacuum evaporation process, so that acidic or alkaline aqueous waste water which is difficult to treat via conventional processes can be easily treated without performing microorganism treatment.
Abstract:
This invention is directed to systems, devices and methods for treating organic-containing sludges and converting such sludges to high value fertilizers containing both inorganic and organic fertilizer components, which creates an inorganically-augmented bioorganic fertilizer. The invention describes methods to create a thixotrophic or paste-like material via the application of mixing energy to the organic sludge followed by an alkaline treatment and a subsequent ammoniation. The invention further describes a method to increase the plant nutrient content in the organic containing product to a level which permits the finished granular fertilizer product to compete in the commercial agricultural fertilizer marketplace. Further, the invention reduces odors associated with said organic-containing sludges.
Abstract:
This invention is directed to systems, devices and methods for treating organic-containing sludges and converting such sludges to high value fertilizers containing both inorganic and organic fertilizer components, which creates an inorganically-augmented bioorganic fertilizer. The invention describes methods to create a thixotrophic or paste-like material via the application of mixing energy to the organic sludge followed by an alkaline treatment and a subsequent ammoniation. The invention further describes a method to increase the plant nutrient content in the organic containing product to a level which permits the finished granular fertilizer product to compete in the commercial agricultural fertilizer marketplace. Further, the invention reduces odors associated with said organic-containing sludges.