摘要:
Ceramic matrix composites include a fiber network and a matrix including layers of first and second materials. The first material may include SiC. The second material may include an element that when oxidized forms a silicate that is stable at high temperatures.
摘要:
A method includes providing a ceramic fiber preform with a range of 20 to 40 volume percent fiber which can include silicon carbide fibers; coating the ceramic fiber preform with a boron nitride interface coating; infiltrating the ceramic fiber preform with a ceramic matrix with a range of 20 to 40 volume percent silicon carbide; infiltrating the ceramic fiber preform with a constituent material such as boron carbide, boron, and carbon; and infiltrating the ceramic fiber preform with a eutectic melt material where the metallic eutectic melt can include at least one material from a group consisting of: a transition metal-silicon eutectic melt such as zirconium silicide, a transition metal-boride eutectic melt such as zirconium boride, and a transition metal-carbide eutectic melt such as zirconium carbide.
摘要:
A method for modifying a ceramic matrix component is disclosed including identifying a non-conforming region of a composite component capable of operating in a gas turbine engine; removing at least a portion of the non-conforming region to create an exposed surface of the composite component; preparing a preform in response to the removing at least a portion of the non-conforming region; applying a reactive constituent surface region to at least one of the exposed surface of the composite component and the preform, the reactive constituent surface region being capable of producing a non-equilibrium condition; positioning the preform to provide a contact region between the exposed surface of the composite component and the preform proximate the reactive constituent surface region; and reacting the reactive constituent surface region in an equilibrium reaction at the contact region to form a bond structure between the exposed surface of the composite component and the preform.
摘要:
A method for making a gas turbine engine matrix composite structure. The method includes providing at least one metal core element, fabricating a matrix composite component about the metal core element, and removing at least part of the metal core element from the matrix composite component by introduction of a halogen gas.
摘要:
A method of forming a ceramic matrix composite structure. The method comprises forming at least one prepregged composite material comprising a ceramic fiber preform and a pre-ceramic matrix slurry. The at least one prepregged composite material is placed over at least one surface of a tool using an advanced fiber placement apparatus to form an at least partially uncured composite material structure. The at least partially uncured composite material structure is exposed at least to elevated temperatures to convert the at least partially uncured composite material structure into a ceramic matrix composite structure. A system for forming a ceramic matrix composite structure, an advanced fiber placement apparatus, and a ceramic matrix composite structure are also described.
摘要:
A honeycomb structure includes at least one honeycomb unit. The at least one honeycomb unit has a plurality of through holes defined by partition walls along a longitudinal direction of the honeycomb unit. The honeycomb unit includes zeolite, an inorganic binder, and a noble metal catalyst. The noble metal catalyst is supported in a region of the honeycomb unit. The region extends from one end portion of the honeycomb unit in the longitudinal direction over approximately 1.5% or more to approximately 20% or less of an overall length of the honeycomb unit in the longitudinal direction.
摘要:
A gusset (40A-G) between two CMC walls (26, 28) has fibers (23) oriented to provide anisotropic strengthening of the wall intersection (34). The fibers (23) may be oriented diagonally to oppose in tension a wall-spreading moment of the walls (26, 28) about the intersection (34). Interlocking features (46, 48, 52, 56, 58) may be provided on the gusset to improve load sharing between the gusset and the walls. The gusset may have one or more diagonal edges (50, 51) that contact matching edges of a slot (42, 42D, 43D) to oppose wall-spreading (M1) and wall-closing (M2) bending of the walls (26, 28). The gusset may be installed in the slot after preparing the gusset and the walls to different temperatures. Then the assembly may be final-fired to produce differential shrinkage that causes compression of the gusset or the wall intersection.
摘要:
The current invention provides a method to fabricate a crack-free continuous fiber-reinforced ceramic matrix composite by eliminating shrinkage stresses through a unique combination of freeze forming and a non-shrinking matrix composition. Cracks related to drying shrinkage are eliminated through freeze forming and cracks related to sintering shrinkage are eliminated by using a matrix that does not shrink at the given sintering temperature. After sintering, a crack-free ceramic composite is obtained.
摘要:
A method for fabricating a ceramic material includes providing a mobilized filler material capable of infiltrating a porous ceramic matrix composite. The mobilized filler material includes at least one of a ceramic material and a free metal. The mobilized filler material is infiltrated into pores of the porous ceramic matrix composite. The mobilized filler material is then immobilized within the pores of the porous ceramic matrix composite.