Abstract:
A surface coating material is provided for forming a hydrophilic oil repellent layer on at least a part of the surface of a substrate, and the surface coating material includes one or more fluorine-based compounds represented by the following formulas (1) to (4), a binder, and a solvent.
Abstract:
The disclosure provides a functionalized polymer for use in coating compositions and a method for making the functionalized polymer. In some embodiments, the functionalized polymer is a water-dispersible polymer, more preferably a water-dispersible polyester polymer, having one or more side groups including one or more salt groups. Packaging containers (e.g., food or beverage cans) comprising the functionalized polymer and methods of making such containers are also provided.
Abstract:
There is provided a dispersion composition having a high dispersion stability, and containing metal oxide particles having a primary particle diameter of 1 nm to 100 nm (A), a polymer compound having an acid value of 120 mgKOH/g or more, which is represented by the following Formula (1) (B), and a solvent (C). (A1-R2nR1P1)m Formula (1)
Abstract:
There is provided a dispersion composition containing (A) a metal oxide particle having a primary particle diameter of 1 nm to 100 nm, (B) a polymer compound represented by the specific formula having a weight average molecular weight of 5,000 to 8,000 and an acid value of 70 to 90 mgKOH/g, and (C) a solvent, and a curable composition containing the dispersion composition and (D) a polymerizable compound.
Abstract:
Provided are: a curable composition that shows good adhesion on a printed wiring board, particularly a flexible substrate or the like, and has a high hardness; a resist coating film of the curable composition; and a printed wiring board having a resist pattern of the resist coating film. The curable composition comprises: (A) a photobase generator; (B-1) an epoxy group-containing (meth)acrylate compound or (B-2) a carboxyl group-containing (meth)acrylate compound; (C) a photopolymerization initiator; and (D-1) a thermosetting component (excluding the (B-1) epoxy group-containing (meth)acrylate compound) or (D-2) a thermosetting component (excluding the (B-2) carboxyl group-containing (meth)acrylate compound).
Abstract:
To provide a process for producing a powder coating material capable of forming a cured film which is excellent in weather resistance and which has few voids (gaps); a coated article having such a cured film; and a method for producing a carboxy group-containing fluororesin less susceptible to gelation. A process for producing a powder coating material containing a powder (X) composed of a composition (a) comprising a fluororesin (A) having carboxy groups, or alkoxysilyl groups and urethane bonds, and a curing agent (D), said process comprising (a) a step of melt-kneading a mixture comprising a hydroxy group-containing fluororesin (B), an acid anhydride (C1) or a compound (C2) having an alkoxysilyl group and an isocyanate group, and the curing agent (D), to obtain a kneaded product composed of the composition (α), and (b) a step of pulverizing the kneaded product to obtain the powder (X).
Abstract:
There is provided a cured-film formation composition that forms a cured film having excellent photoreaction efficiency and solvent resistance, and high adhesion, an orientation material for photo-alignment, and a retardation material formed with the orientation material.
Abstract:
The present invention provides novel compositions prepared from a first oligomer containing reactive functional groups capable of reaction at effective rates (at normal processing temperatures) with a co-reactive second component possessing functionality that is complementary to that of the first oligomer. The compositions may be used as coatings, including hard surface coatings, clear coatings, powder coatings and pattern coatings; as adhesives, including pressure sensitive adhesives and hot melt adhesives; as sealants; as optical coatings; as blown microfibers (BMF); as high refractive index optical materials; as barrier films; in microreplication; as low adhesion backsizes, (LABs) and as release coatings.