METHOD FOR THE PRODUCTION OF HIGH PERMEABILITY GRAIN ORIENTED ELECTRICAL STEEL CONTAINING CHROMIUM

    公开(公告)号:US20230212720A1

    公开(公告)日:2023-07-06

    申请号:US17566044

    申请日:2021-12-30

    发明人: Jerry W. Schoen

    摘要: A high permeability grain oriented electrical steel having a chemistry comprising, all in weight percent, 2.5% to 4.5% silicon, 0.02% to 0.08% carbon, 0.01 to 0.05% aluminum, 0.005% to 0.050% sulfur or selenium, 0.02 to 0.20% manganese, 0.05 to 0.20% tin, 0.05 to 1% copper, 0.5% to 2.0% chromium, up to 0.10% phosphorus and up to 0.20% antimony with the balance being essentially iron and residual elements. The steel contains chromium and phosphorus in such amounts that a Cr:(P+0.25Sb) ratio is below 80:1 or, below 50:1, or below 30:1 which provides highly stable magnetic properties in the finished steel sheet. A hot processed band comprised of such steel is annealed and rapidly cooled after such annealing at a rate of at least 50° C. per second from 875-950° C. to a temperature below 400° C. prior to cold rolling to final thickness. Such steel forming a hot processed band having a thickness of from 1.5 to 4.0 mm and having a volume resistivity of at least 50 μΩ-cm, an austenite volume fraction (γ1150° C.) of at least 20%, and an isomorphic layer thickness of at least 2% of the total thickness on at least one surface of the hot processed band.

    ALLOY PIPE AND METHOD FOR PRODUCING SAME
    67.
    发明公开

    公开(公告)号:US20230183829A1

    公开(公告)日:2023-06-15

    申请号:US17925410

    申请日:2021-05-12

    IPC分类号: C21D8/10 C22C38/60 C21D6/00

    摘要: An alloy pipe and a method for producing the same are disclosed. The alloy pipe of the present invention contains, as a component composition, in terms of % by mass, Cr: 11.5-35.0%, Ni: 23.0-60.0%, and Mo: 0.5-17.0%, has an austenitic phase as a microstructure, has a Mo concentration (% by mass) in a grain boundary of the austenitic phase that is 4.0 times or less than a Mo concentration (% by mass) within grains of the austenitic phase, and has a tensile yield strength in a pipe axial direction of 689 MPa or more and a ratio (compressive yield strength in a pipe axial direction)/(tensile yield strength in a pipe axial direction) of 0.85 to 1.15.