Abstract:
A method for determining the composition of fluids flowing through pipes from noninvasive measurements of acoustic properties of the fluid is described. The method includes exciting a first transducer located on the external surface of the pipe through which the fluid under investigation is flowing, to generate an ultrasound chirp signal, as opposed to conventional pulses. The chirp signal is received by a second transducer disposed on the external surface of the pipe opposing the location of the first transducer, from which the transit time through the fluid is determined and the sound speed of the ultrasound in the fluid is calculated. The composition of a fluid is calculated from the sound speed therein. The fluid density may also be derived from measurements of sound attenuation. Several signal processing approaches are described for extracting the transit time information from the data with the effects of the pipe wall having been subtracted.
Abstract:
An apparatus for measuring the mass fractions of water and oil in a flowing mixture of oil and water through a pipe includes a sensor portion that measures sound velocity and temperature of the flowing oil water mixture at a first time and at a second time. The apparatus includes a temperature changer in thermal communication with the flowing fluid which changes the temperature of the flowing oil water mixture by a measurable amount between the first time and the second time. A method for measuring water mass fraction in a flowing mixture of oil and water through a pipe includes the steps of measuring sound velocity and temperature of the flowing oil water mixture at a first time with a sensor portion. There is the step of changing the temperature of the flowing oil water mixture by a measurable amount with a temperature changer in thermal communication with the flowing fluid. There is the step of measuring sound velocity and temperature of the flowing oil water mixture at a second time with the sensor portion.
Abstract:
A system and method for detecting mass based on a frequency differential of a resonating micromachined structure, such as a cantilever beam. A high aspect ratio cantilever beam is coated with an immobilized binding partner that couples to a predetermined cell or molecule. A first resonant frequency is determined for the cantilever having the immobilized binding partner. Upon exposure of the cantilever to a solution that binds with the binding partner, the mass of the cantilever beam increases. A second resonant frequency is determined and the differential resonant frequency provides the basis for detecting the target cell or molecule. The cantilever may be driven externally or by ambient noise. The frequency response of the beam can be determined optically using reflected light and two photodetectors or by interference using a single photodetector.
Abstract:
An acoustic method and apparatus detects or characterizes a medium in a structure which may be a container, such as a pipeline for transportation of oil, gas, or hydrocarbon condensate. A pulse of broadband acoustic energy is emitted towards the structure by a first transducer. A return signal is generating by a second transducer from acoustic energy returned from the structure in response to the emission of acoustic energy. A return signal spectrum representing acoustic spectral components of the acoustic energy returned from the structure is derived from the return signal, and the medium is detected or characterized by applying a return signal processing medium detection or characterization algorithm to the return signal spectrum.
Abstract:
A relaxation time constant associated with a fluid can be determined and then compared with a stored reference value. The difference between the relaxation time constant and the stored reference value can then be calculated in order to provide qualitative and/or quantitative data indicative of an adulteration of the fluid. The relaxation time constant associated with the fluid can be determined by first generating a static charge and then injecting the static charge into the fluid. The charge can then be collected from the fluid and utilized to determine the relaxation time constant.
Abstract:
An apparatus for determining a fluid cut measurement of a multi-liquid mixture includes a first device configured to sense at least one parameter of the mixture to determine a fluid cut of a liquid in the mixture. A second device is configured to determine a concentration of gas in the mixture in response to a speed of sound in the mixture; and a signal processor is configured to adjust the fluid cut of the liquid using the concentration of the gas to determine a compensated fluid cut of the liquid. The parameter of the mixture sensed by the first device may include a density of the mixture (e.g., by way of a Coriolis meter), a permittivity of the mixture (e.g., by way of a resonant microwave oscillator), or an amount of microwave energy absorbed by the mixture (e.g., by way of a microwave absorption watercut meter). The signal processor may employ different correction factors depending on the type of fluid cut device used. The second device may include a gas volume fraction meter.
Abstract:
The present invention relates to integrated micro-cantilevers, micro-bridges or micro-membranes in micro-liquid handling systems. Such micro-liquid handling systems provide novel detection mechanisms for monitoring the physical, chemical and biological properties of fluids in such systems. The present invention further relates to micro-cantilever, micro-bridge or micro-membrane type sensors having integrated readout. Such constructions allow laminated flows of different liquids to flow in a channel without mixing, which opens up for new type of experiments and which reduces noise related to the liquid movement. The present invention even further relates to sensors having adjacent or very closely spaced micro-cantilevers, micro-bridges or micro-membranes which can be exposed to different chemical environments at the same time.
Abstract:
A method and apparatus for measuring properties of a liquid composition includes a mechanical resonator, such as a cantilever, connected to a measurement circuit. The mechanical resonator can be covered with a coating to impart additional special detection propertied to the resonator, and multiple resonators can be attached together as a single sensor to obtain multiple frequency responses. The invention is particularly suitable for combinatorial chemistry applications, which require rapid analysis of chemical properties for screening. In one embodiment, the resonator is operated at a frequency of less than 1 MHz.
Abstract:
The present invention provides a distributed sensing system in a networked environment for identifying an analyte, including a first sensor array connected to the network comprising sensors capable of producing a first response in the presence of a chemical stimulus; a second sensor array connected to the network comprising sensors capable of producing a second response in the presence of a physical stimulus; and a computer comprising a resident algorithm. The algorithm indicates or selects the most relevant sensor in the network to identify the analyte. The sensors can be separated over large spatial areas, wherein the sensor arrays are networked. Suitable networks include a computer local area network, an intranet or the Internet.
Abstract:
Methods and apparatus for screening diverse arrays of materials using infrared imaging techniques are provided. Typically, each of the individual materials on the array will be screened or interrogated for the same material characteristic. Once screened, the individual materials may be ranked or otherwise compared relative to each other with respect to the material characteristic under investigation. According to one aspect, infrared imaging techniques are used to identify the active sites within an array of compounds by monitoring the temperature change resulting from a reaction. This same technique can also be used to quantify the stability of each new material within an array of compounds. According to another aspect, identification and characterization of condensed phase products is achieved, wherein library elements are activated by a heat source serially, or in parallel. According to another aspect, a Fourier transform infrared spectrometer is used to rapidly characterize a large number of chemical reactions contained within a combinatorial library.