Abstract:
A secure short-distance-based communication and validation system validates users in a validation area. The system may include multiple zones in the validation area and beacons in each zone. A run-time mobile device identifier and keys that may be location-specific, device-specific and time-specific are generated and utilized for secure communication between mobile devices and a zone computer in a zone. The validation area may be in a vehicle, and validation may include deducting a fare.
Abstract:
A wireless access control system locks or unlocks a door at a dwelling. A remote access device transmits a signal. A lock system, for locking and unlocking a door in which the lock is located, includes a lock, a processor with a memory, one or more wireless communication devices coupled to a circuit and one or more motion transfer device coupled to a drive shaft. The lock receives the signal and enables the lock to be one of locked or unlocked in response to the signal. The remote access device has a controller for generating the signal, and an accelerometer providing an acceleration signal to the controller when the accelerometer experiences an acceleration. The controller generates the signal in response to the acceleration signal.
Abstract:
A system and method for remote activation of a device includes, in one embodiment, transmitting a command signal according to one of a first transmission protocol and a second transmission protocol, and selecting the first transmission protocol for use in transmitting the command signal when a selected command is of a first type, and selecting the second transmission protocol for use in transmitting the command signal when a selected command is of a second.
Abstract:
A lock, such as a padlock or a door lock, having radio frequency identification (RFID) and/or Bluetooth capabilities is disclosed. The control system in the lock may obtain identifying information from a user device presented close to the lock, and operates an actuator to unlock the lock based on the identifying information. The lock may include both an RFID reader and a Bluetooth system in a single device, and may automatically lock and unlock the lock by detecting a presence or an absence of a user device near the lock. At least a portion of a front face of the lock may be made of non-metallic material. The lock may include an indicator for indicating a power-on state, a Bluetooth connection status, a locked or unlocked status, and/or a low-battery state.
Abstract:
A method of provisioning a mobile communication device with key functionality is disclosed. The method comprises a web portal receiving a request to add key functionality to a mobile communication device and a vehicle. The method comprises registering the mobile communication device via a vehicle key server as a precondition to add a key and a salt to the mobile communication device and a vehicle, wherein the key and the salt are codes. The method comprises accessing a vehicle key data store via the vehicle key server, wherein the data store comprises keys and salts. The method comprises transmitting the key and the salt to a trusted service manager (TSM) server via the vehicle key server; transmitting the salt to the vehicle, and transmitting the salt and the key to the mobile communication device, whereby the mobile communication device is enable to command the vehicle to unlock, lock, or start.
Abstract:
A keyless entry device and method for powering the keyless entry system, such as a key fob, are disclosed. The keyless entry device has a charging battery, a rechargeable battery, at least one long range function button for a long range function, and at least one short range function button for a short range function. The method includes charging the rechargeable battery using the charging battery, wherein the rechargeable battery has a larger burst current delivery capacity than the charging battery. The method further includes sending a short range transmission from the keyless entry device using at least one of: the charging battery, and the rechargeable battery, when the at least one short range function button is actuated. The method further includes sending a long range transmission from the keyless entry device at least one of: the charging battery, and the rechargeable battery, when the at least one long range function button is actuated.
Abstract:
A wireless access control system includes a remote access device and an electronic lock. The electronic lock communicates with the remote access device. The electronic lock controls the ability to lock and unlock a door in which the electronic lock is disposed. The electronic lock determines when the remote access device is at a distance less than or equal to a predetermined distance from the lock to enable the lock to be unlocked.
Abstract:
A wireless access control system includes a remote access device. A plugin device communicates with the remote access device. A lock controls the ability to lock and unlock a door in which the lock is disposed. The lock is in communication with the plug in device. The plug in device determines a distance between the remote access device and the lock and causes the lock to communicate with the remote access device when the remote access device is at a distance less than or equal to a predetermined distance from the lock to enable the lock to be unlocked.
Abstract:
A system includes a translator device that is configured to receive, using a pre-programmed native mode of operation, a first barrier actuation code transmitted by a transmitter according to a first code format. The translator device then analyzes the first barrier actuation code and verifies that it is a valid code. When a valid code, the translator device saves the information contained in the code, and creates a second barrier actuation code at least in part from information contained in the first actuation code and transmits the second barrier actuation code according to the second code format, which is different from the first code format. A barrier operator is coupled to the translator device and a barrier. The barrier operator has a receiver apparatus and the receiver apparatus receives the second barrier actuation code. The barrier operator determines whether the second barrier actuation code is valid, and when the barrier actuation code is determined to be valid, actuates the barrier.
Abstract:
In general, aspects of this disclosure are directed towards techniques for using a computing device to perform the functionality of a vehicle key, so that the computing device may be used to automatically unlock the doors of a vehicle and/or to activate a previously-deactivated keyless ignition system. The computing device may be associated with a vehicle, including sending an identifier associated with the computing device to the vehicle via short-range communication. The computing device may also send to the vehicle, via short-range communication, at least one unlock door signal including an access code verifiable by the vehicle, and wherein receipt of the at least one unlock door signal by the vehicle enables the vehicle to unlock one or more of its doors without further user intervention.