Abstract:
A stator core for a rotating electric machine includes a plurality of split cores. Each of the plurality of split cores includes a back yoke, a tooth, and a single caulking portion. When each of the plurality of split cores is seen in an axial direction, two inner circumferential-side intersections and two outer circumferential-side intersections are defined, both circumferential-end surfaces of the tooth intersect an inner circumferential surface of the back yoke at the two inner circumferential-side intersections, virtual lines drawn by extending both the circumferential-end surfaces of the tooth intersect an outer circumferential surface of the back yoke at the two outer circumferential-side intersections, a central position of the caulking portion is disposed in an opposing angular region on a radially outer side out of four opposing angular regions defined by lines diagonally connecting the two inner circumferential-side intersections to the respective two outer circumferential-side intersections.
Abstract:
Each lamination of the lamination stack comprises at least one assembly of coupling elements, said assembly comprising one insertion clamp, one receiving clamp and at least one receiving window, said coupling elements maintaining the same relative positioning from one another, the insertion clamp and the receiving clamp being defined by respective portions of the lamination axially projecting to the same side of the latter, each insertion clamp of a lamination being fitted, by interference, in the interior of a receiving clamp of an adjacent lamination, and each receiving clamp of a lamination being housed in the receiving window of at least one lamination of the stack.
Abstract:
A stator and a rotary electric machine include a stator core including a plurality of stacked annular electromagnetic steel plates with coupling portions. The coupling portions are arranged with a pitch of an integral multiple of a central angle. The central angle is defined as an angle between two adjacent magnetic poles of the same polarity relative to a rotational center of the rotor. When a number of the coupling portions is an odd number, fixing portions are arranged with the same pitch as the pitch of the coupling portions, or with a pitch corresponding to a divisor of the pitch of the coupling portions. When a number of the coupling portions is an even number, the fixing portions are arranged with a pitch corresponding to a divisor of the pitch of the coupling portions, or a divisor of 180°.
Abstract:
Embodiments of laminated stator cores suitable for usage in high temperature applications are provided, as are embodiments of methods for manufacturing high temperature laminated stator core. In one embodiment, the method includes obtaining a plurality of coated laminates each comprising a laminate over which a coating precursor layer is formed. The coating precursor layer contain inorganic dielectric particles having a softening point. The plurality of coated laminates are arranged in a laminate stack, which is then fired at temperatures equal to or greater than the softening point of the inorganic dielectric particles. During firing, a compressive force is applied to the laminate stack sufficient to consolidate the inorganic dielectric particles into a plurality of coherent interlaminate dielectric layers electrically insulating and bonding together the plurality of coated laminates as the high temperature laminated stator core.
Abstract:
A stator for an electric rotating machine includes an annular stator core, an outer cylinder fitted on a radially outer surface of the stator core, and a stator coil mounted on the stator core. The stator core is comprised of a plurality of stator core segments that are arranged in a circumferential direction of the stator core so as to adjoin one another in the circumferential direction. The stator coil is fixed to the stator core by a thermosetting resin that is set by induction-heating the stator core. Each of the stator core segments is formed by laminating a plurality of steel sheets in an axial direction of the stator core and fixing at least some of the steel sheets by staking. The number of staking portions formed in one of the steel sheets is different from the number of staking portions formed in another one of the steel sheets.
Abstract:
An electrical rotary machine comprises a stator having a plurality of split cores arranged in an annular shape and a holding ring capable of retaining the plurality of split cores on an inner circumferential surface so that a surface pressure is applied to an outer circumferential surface of the split cores. The electrical rotary machine further comprises a rotor provided radially inside of the stator facing the split cores in a radial direction and rotatable relative to the stator. Each of the split cores includes a tooth portion extending in an radial direction and a back yoke portion extending in a circumferential direction. Each of the split cores further includes a slit penetrating an outer circumferential periphery of the back yoke portion except for either circumferential end of the back yoke portion.
Abstract:
A rotary lamination apparatus has a die assembly rotatable about an axis and a mounting table received in an axial hole extending through the die assembly. Through rotation of the die assembly, punched core pieces are mounted on the mounting table while being rotatively offset. A drive mechanism is employed to rotate the mounting table integrally with the die assembly about the axis of the die assembly.
Abstract:
A solid fixing resin composition, which has excellent filling properties, and a rotor using the same are provided. The fixing resin composition is used to form a fixing member constituting a rotor which includes a rotor core (110) which has a laminate formed by lamination of a plurality of plate members, is fixed and installed on a rotating shaft, and has a plurality of hole portions (150) arranged along the peripheral portion of the rotating shaft, provided in the laminate; a magnet (120) inserted in the hole portion (150); and a fixing member (130) formed by curing a fixing resin composition, filled in the separation portion between the hole portion (150) and the magnet (120), the resin composition including a thermosetting resin (A) containing an epoxy resin; a curing agent (B); and an inorganic filler (C), in which the ICI viscosity at 150° C. of the epoxy resin is equal to or less than 3 poises.
Abstract:
Each lamination of the lamination stack comprises at least one assembly of coupling elements, said assembly comprising one insertion clamp, one receiving clamp and at least one receiving window, said coupling elements maintaining the same relative positioning from one another, the insertion clamp and the receiving clamp being defined by respective portions of the lamination axially projecting to the same side of the latter, each insertion clamp of a lamination being fitted, by interference, in the interior of a receiving clamp of an adjacent lamination, and each receiving clamp of a lamination being housed in the receiving window of at least one lamination of the stack.
Abstract:
A permanent magnet embedded type rotating electrical machine includes a rotor and a stator. The rotor includes a rotor core formed by a plurality of stacked and laminated magnetic steel plates and permanent magnets. Each magnetic steel plate has a plurality of magnet holes, connecting portions and sectional areas. The sectional area is surrounded by lines extending between the opposite ends of the magnet hole and between a rotation center of the rotor and the respective ends of the magnet hole. The connecting portion is provided only inside of the sectional area and is a joining portion at which any two adjacent magnetic steel plates are joined or a fastening hole in which a fastening member is inserted. The connecting portions include both the joining portion and the fastening hole. The connecting portion provided in the sectional area is at least one of the joining portion and the fastening hole.