Abstract:
Composition of carbon nanotubes (CNTs) are produced into inks that are dispensable via ink jet deposition processes. The CNT ink is dispensed into wells formed in a cathode structure.
Abstract:
The present invention provides an apparatus and a method of fabricating the apparatus. The apparatus comprises a substrate having a planar surface and first and second electrodes located on the planar surface. The first electrode has a top surface and a lateral surface, and the lateral surface has an edge near or in contact with the substrate. An electrode insulating layer is located on the top surface and a self-assembled layer located on the lateral surface. The second electrode is in contact with both the self-assembled layer and the electrode insulating layer.
Abstract:
To provide nanotweezers and a nanomanipulator which allow great miniaturization of the component and are capable of gripping various types of nano-substances such as insulators, semiconductors and conductors and of gripping nano-substances of various shapes. Electrostatic nanotweezers 2 are characterized in that the nanotweezers 2 are comprised of a plurality of nanotubes whose base end portions are fastened to a holder 6 so that the nanotubes protrude from the holder 6, coating films which insulate and cover the surfaces of the nanotubes, and lead wires 10, 10 which are connected to two of the nanotubes 8, 9; and the tip ends of the two nanotubes are freely opened and closed by means of an electrostatic attractive force generated by applying a voltage across these lead wires. Furthermore, by way of forming a piezo-electric film 32 on the surface of the nanotube 9, and the tip ends of the nanotubes are freely opened and closed by expanding and contracting the piezo-electric film, thus allowing any desired nano-substances to be handled regardless of whether the nano-substances are insulators, semiconductors or conductors. Furthermore, if by way of designing three nanotubes so as to be freely opened and closed by an electrostatic system, nano-substances of various shapes such as spherical, rod-form, etc. can be handled. Moreover, a nanomanipulator that is constructed by combining the nanotweezers with a three-dimensional driving mechanism facilitates the gripping, moving and releasing of nano-substances.
Abstract:
To provide nanotweezers and a nanomanipulator which allow great miniaturization of the component and are capable of gripping various types of nano-substances such as insulators, semiconductors and conductors and of gripping nano-substances of various shapes. Electrostatic nanotweezers 2 are characterized in that the nanotweezers 2 are comprised of a plurality of nanotubes whose base end portions are fastened to a holder 6 so that the nanotubes protrude from the holder 6, coating films which insulate and cover the surfaces of the nanotubes, and lead wires 10, 10 which are connected to two of the nanotubes 8, 9; and the tip ends of the two nanotubes are freely opened and closed by means of an electrostatic attractive force generated by applying a voltage across these lead wires. Furthermore, by way of forming a piezo-electric film 32 on the surface of the nanotube 9, and the tip ends of the nanotubes are freely opened and closed by expanding and contracting the piezo-electric film, thus allowing any desired nano-substances to be handled regardless of whether the nano-substances are insulators, semiconductors or conductors. Furthermore, if by way of designing three nanotubes so as to be freely opened and closed by an electrostatic system, nano-substances of various shapes such as spherical, rod-form, etc. can be handled. Moreover, a nanomanipulator that is constructed by combining the nanotweezers with a three-dimensional driving mechanism facilitates the gripping, moving and releasing of nano-substances.
Abstract:
The method of the present invention includes the steps of rotating a molecule having a predetermined structure by applying a first alternating current electromagnetic field to the molecule, wherein the first alternating current electromagnetic field is produced by an electromagnetic field generation means that is set to a predetermined phase, controlling a rotational phase of the molecule by applying a second electromagnetic field to the rotated molecule by an information recording means, detecting a signal using a signal detection means in accordance with a rotation of the molecule having the rotational phase which has been controlled, and outputting a shift between the phase of the first alternating current electromagnetic field and a phase of the detection signal from the signal detection means as information by an information reading means.
Abstract:
To provide nanotweezers and a nanomanipulator which allow great miniaturization of the component and are capable of gripping various types of nano-substances such as insulators, semiconductors and conductors and of gripping nano-substances of various shapes. Electrostatic nanotweezers 2 are characterized in that the nanotweezers 2 are comprised of a plurality of nanotubes whose base end portions are fastened to a holder 6 so that the nanotubes protrude from the holder 6, coating films which insulate and cover the surfaces of the nanotubes, and lead wires 10, 10 which are connected to two of the nanotubes 8, 9; and the tip ends of the two nanotubes are freely opened and closed by means of an electrostatic attractive force generated by applying a voltage across these lead wires. Furthermore, by way of forming a piezo-electric film 32 on the surface of the nanotube 9, and the tip ends of the nanotubes are freely opened and closed by expanding and contracting the piezo-electric film, thus allowing any desired nano-substances to be handled regardless of whether the nano-substances are insulators, semiconductors or conductors. Furthermore, if by way of designing three nanotubes so as to be freely opened and closed by an electrostatic system, nano-substances of various shapes such as spherical, rod-form, etc. can be handled. Moreover, a nanomanipulator that is constructed by combining the nanotweezers with a three-dimensional driving mechanism facilitates the gripping, moving and releasing of nano-substances.
Abstract:
To provide nanotweezers and a nanomanipulator which allow great miniaturization of the component and are capable of gripping various types of nano-substances such as insulators, semiconductors and conductors and of gripping nano-substances of various shapes. Electrostatic nanotweezers 2 are characterized in that the nanotweezers 2 are comprised of a plurality of nanotubes whose base end portions are fastened to a holder 6 so that the nanotubes protrude from the holder 6, coating films which insulate and cover the surfaces of the nanotubes, and lead wires 10, 10 which are connected to two of the nanotubes 8, 9; and the tip ends of the two nanotubes are freely opened and closed by means of an electrostatic attractive force generated by applying a voltage across these lead wires. Furthermore, by way of forming a piezo-electric film 32 on the surface of the nanotube 9, and the tip ends of the nanotubes are freely opened and closed by expanding and contracting the piezo-electric film, thus allowing any desired nano-substances to be handled regardless of whether the nano-substances are insulators, semiconductors or conductors. Furthermore, if by way of designing three nanotubes so as to be freely opened and closed by an electrostatic system, nano-substances of various shapes such as spherical, rod-form, etc. can be handled. Moreover, a nanomanipulator that is constructed by combining the nanotweezers with a three-dimensional driving mechanism facilitates the gripping, moving and releasing of nano-substances.
Abstract:
The invention relates to molecules which can be attached to a substrate (4) and switched between different stable or metastable conformations (18, 19). At least one of these conformations (19) is generated and/or stabilized by the proximity of the substrate (4). The invention further relates to a layered medium comprising such molecules and to a method to switch such molecules in a controlled way. The layered medium is usable as resists for lithographic application, data storage media, and promoter of electron transfer between two media. The method is usable to generate and interrogate patterns in the layered medium.
Abstract:
Templates for the binding and synthesis of biological molecules are disclosed. The templates according to the invention consist of an atomically flat substrate and a three-dimensional pattern formed on the substrate by the positioning of individual atoms or molecules or groups of atoms or molecules to form hillocks. The hillocks are capable of binding to complementary portions of biological molecules or their component molecules.
Abstract:
A novel carbon material is obtained by bending at least one carbon atom layer of graphite in at least one selected region along either, or both, of lines I and II in FIG. 1. The bending can be accomplished by scanningly picking the carbon atom layer(s) with a probe of an atomic force microscope or another scanning microscope. The obtained carbon material has at least one round bend having a width of 0.1-10 nm and at least one flap region having a triangular, rectangular or still differently polygonal shape in plan view. When the carbon atom layer(s) is bent with very small radii of curvature, a finely striped ridge-and-groove structure appears in the round bend. The physical properties of the obtained carbon material are uniquely determined by the direction(s) of bending, width of each bend, shape and size of each flap region and the stripe pitch of the ridge-and-groove structure.