摘要:
An optical filtering device, in particular for remote gas detection, including a member comprising a tubular passage accommodating a plurality of reflective structures capable of reflecting infrared wavelengths, said structures being elongated along an axis of the tubular passage and arranged around the axis. The reflective structures comprise means of filtering by absorption of bands of different wavelengths located in the infrared spectral band.
摘要:
Described herein is a spectroscopic system and method for measuring and monitoring the chemical composition and/or impurity content of a sample or sample stream using absorption light spectroscopy. Specifically, in certain embodiments, this invention relates to the use of sample pressure variation to alter the magnitude of the absorption spectrum (e.g., wavelength-dependent signal) received for the sample, thereby obviating the need for a reference or ‘zero’ sample. Rather than use a reference or ‘zero’ sample, embodiments described herein obtain a spectrum/signal from a sample-containing cell at both a first pressure and a second (different) pressure.
摘要:
A gas detector includes: an infrared camera that images a gas; and a controller including at least an electronic component, wherein the controller determines a temperature range of the infrared camera in which the gas can be imaged, and detects the gas from moving infrared images taken for a predetermined period of time in the temperature range determined.
摘要:
Systems and methods for detecting chemical species including a lens, a beam splitter, first and second bandpass filters, and first and second electromagnetic radiation detectors. The first bandpass filter has a first transmittance window having a first width transmitting greater than 50% of the filtered first electromagnetic radiation beam within a first electromagnetic radiation wavelength range. The second bandpass filter includes a second transmittance window having a second width within a second electromagnetic radiation wavelength range. The second transmittance window has an upper limit wavelength value that is greater than an upper limit wavelength value of the first transmittance window. The second bandpass filter is configured to transmit a lesser percentage of the second electromagnetic radiation beam passing through the second transmittance window than the first bandpass filter transmits of the first electromagnetic radiation beam passing through the first transmittance window.
摘要:
This invention provides a zero gas refiner for CO2 concentration measurement device that can continuously refine a zero gas that is preferable for CO2 concentration measurement. This invention adopts the zero gas refiner comprising a water adsorbent and a CO2 adsorbent that desorb an adsorbed component and restore an adsorption ability by being heated to a predetermined restoration temperature, a refiner body that adsorbs water and CO2 in an introduced sample gas or air in this order by the use of the water adsorbent and the CO2 adsorbent housed inside of the refiner body so as to refine a zero gas and that leads out the zero gas, and a heating mechanism that applies heat to the refiner body at a time when the adsorption ability of the water adsorbent or the CO2 adsorbent drops to an amount that is less than or equal to a predetermined amount.
摘要:
Light intensity data quantifying intensity of light generated by a light source and received at a detector during a validation mode of an absorption spectrometer can be compared with a stored data set representing at least one previous measurement in a validation mode of an analytical system. The validation mode can include causing the light to pass at least once through each of a zero gas and a reference gas contained within a validation cell and including a known amount of a target analyte. The zero gas can have at least one of known and negligible first light absorbance characteristics within a range of wavelengths produced by the light source. A validation failure can be determined to have occurred if the first light intensity data and the stored data set are out of agreement by more than a predefined threshold amount. Related systems, methods, and articles of manufacture are also described.
摘要:
An example system, method, and computer program product for detecting thermal runaway in a battery cell is provided. The example system includes a light source configured to emit light across a spectrum of wavelengths toward a sensing fiber having a first end and a second end. The sensing fiber may be positioned to receive the light emitted by the light source at the first end. The sensing fiber may further contain a filtering mechanism configured to reflect a portion of the spectrum of wavelengths of the light. In addition, the sensing fiber may be optically coupled to a photodiode at the second end, such that a portion of the light is reflected as the light travels through the sensing fiber. The gas may be detected based at least in part on an intensity of the light received at the photodiode indicating the onset of thermal runaway.
摘要:
Various techniques are provided for increasing contrast of gas features in a scene. In one example, a method includes receiving a captured infrared image comprising a gas feature and a scene feature. The captured infrared image comprises a first range of pixel values associated with a first temperature range of the gas feature and the scene feature. The method also includes applying a spatial filter to the captured infrared image to provide a spatially filtered infrared image retaining the gas feature and removing the scene feature. The spatially filtered infrared image comprises a second range of pixel values associated with a second temperature range of the gas feature without the additional scene feature to exhibit increased gas contrast over the captured infrared image. Additional methods and systems are also provided.
摘要:
In order to provide an absorbance analysis apparatus for DCR gas that can measure a concentration of a DCR gas by separating absorbance of the DCR gas alone even in a mixed gas consisting of the DCR gas and CO gas whose absorption spectrum overlaps each other, the absorbance analysis apparatus for DCR gas comprises a DCR filter 31 that is configured to transmit a light in a first wavenumber domain including an absorbance peak of the DCR gas, a CO filter 32 that is configured to transmit a light in a second wavenumber domain that is different from the first wavenumber domain, and a DCR gas volume calculator 4 that is configured to calculate volume of the DCR gas based on a first absorbance measured by the light transmitted through the DCR filter 31 and a second absorbance measured by the light transmitted through the CO filter 32.