Abstract:
The first object of the present invention is to provide a PDP with improved panel brightness which is achieved by improving the efficiency in conversion from discharge energy to visible rays. The second object of the present invention is to provide a PDP with improved panel life which is achieved by improving the protecting layer protecting the dielectrics glass layer. To achieve the first object, the present invention sets the amount of xenon in the discharge gas to the range of 10% by volume to less than 100% by volume, and sets the charging pressure for the discharge gas to the range of 500 to 760Torr which is higher than conventional charging pressures. With such construction, the panel brightness increases. Also, to achieve the second object, the present invention has, on the surface of the dielectrics glass layer, a protecting layer consisting of an alkaline earth oxide with (100)-face or (110)-face orientation. The protecting layer, which may be formed by using thermal Chemical Vapor Deposition (CVD) method, plasma enhanced CVD method, or a vapor deposition method with irradiation of ion or electron beam, will have a high sputtering resistance and effectively protect the dielectrics glass layer. Such a protecting layer contributes to the improvement of the panel life.
Abstract:
A planer discharge type plasma display panel has an internal configuration to suppress an increase in power consumption and also to provide high brightness in the sense of visual sensation. A pair of row electrodes X,Y parallel to each other are formed on a front glass substrate in the display section, and transparent electrodes with a discharging gap formed in a portion thereof and bus electrodes are formed on a portion of the substrate, and a dielectric layer is further formed to cover the electrodes. The dielectric layer is formed so that a film thickness of the bus electrode is made larger as compared to that of the dielectric layer in a light emitting region between the opposing bus electrodes, namely by providing a protruding section thereon. The area of the protruding section is made small in a central portion of the PDP, and is gradually made larger in a direction from the central portion to the peripheral section thereof.
Abstract:
Disclosed is a plasma display panel including a porous metal plate in which a plurality of holes for display cells are formed at positions corresponding to intersections at which a first linear electrode group and a second linear electrode group cross each other with a predetermined interval therebetween, and a front glass plate, wherein openings of the holes of the porous metal plate on the front surface side are larger than openings on the rear surface side, the openings on the rear surface are covered with a molten material of an inorganic dielectric containing glass and are thereby air-tightly sealed. This plasma display panel is light in weight and thin and can be easily assembled.
Abstract:
This disclosure relates to a color PDP comprising a plurality of striped color filters formed in parallel on the inner surface of a front plate, a plurality of dielectric layers formed on the color filters and having a plurality of light-passing holes formed at predetermined intervals on those portions corresponding to respective color filters, a white fluorescent layer formed on the dielectric layer, and a plurality of anodes formed on the white fluorescent layer corresponding to the color filters and each having light-passing openings formed on the portion corresponding to respective light-passing holes of the dielectric layer, thereby preventing optical crosstalk between adjacent cathodes in the direction of a scanning line and obtaining uniform luminance.
Abstract:
A planar discharge plasma display device is disclosed, wherein common third signal lines, first signal lines for display discharge, and second signal lines for auxiliary discharge are formed on a rear plate, and barrier ribs for preventing cross-talk between pixels are formed together. Particularly, the signal lines and barrier ribs formed in the same direction constitute an accumulated structure so that the display discharge can be caused fast and stably, and also the occupation area of pixel per unit area is maximized, thereby realizing an image display of higher density.
Abstract:
In a gas discharge display element according to the present invention, two pairs of electrodes are arranged in a discharge space of a display cell and one of the electrode pairs which forms a first discharge space between the first electrodes is driven such that discharge having a memory function and capable of being memory-driven is produced during a time in which light emission of the display cell is sustained. The other electrode pair is driven with a voltage pulse having duration smaller than that of the driving voltage pulse for the first electrode pair such that discharge a is obtained in the other space defined between the electrodes of the other electrode pair using the discharge in the first space as a seed discharge. The duration of the drive pulse for the second electrode pair preferably terminates before the discharge current is reduced due to the formation of a wall charge.
Abstract:
A gas discharge panel provides one or more shift channels for discharge spots, said shift channel (s) being composed of 2 or more electrode groups on each of a pair of substrates arranged oppositely across a discharge gap. Electrodes of each group are provided alternately and periodically on each substrate with the electrode patterns on each substrate such as to define said shift channel(s). The electrode layout eliminates the need for crossover areas in the leading out of electrodes and is very useful for realizing high resolution and low cost AC driven self-shift plasma display panels.
Abstract:
Two arrays of main X and Y electrodes are juxtaposed with two arrays of auxiliary electrodes in two parallel plane respectively. Two half illumination or extinction pulses less in magnitude than a discharge voltage across the opposite arrays and opposite in polarity are applied to selected ones of the X and Y electrodes to initiate or terminate an electric discharge or discharges across them. A pulse train including positive pulses alternating negative pulses is applied across the arrays of auxiliary electrodes to be discharged across those auxiliary electrodes juxtaposed with the selected X and Y electrodes upon each inversion of the pulses polarity after the first discharge.
Abstract:
A display system for a plasma display device in which a plurality of electrodes are arranged on each of a pair of opposing base plates with a discharge gas space defined therebetween, the plurality of electrodes on each base plate being arranged to intersect those on the other base plate perpendicularly to them; the electrodes on at least one of the base plate are covered with a dielectric layer to form a display layer; the other plate serves as a shift layer; a discharge produced between adjacent electrodes of the shift layer is shifted; and a discharge is caused between adjacent electrodes of the display layer in accordance with the timing of the shifting of the discharge in the shift layer and that of writing in the display layer.
Abstract:
An arc chamber liner has first and second surfaces and a hole having a first diameter. A liner lip having a second diameter extends upwardly from the second surface toward the first surface and surrounds the hole. An electrode has a shaft with a third diameter and a head with a fourth diameter. The third diameter is less than the first diameter and passes through the body and hole and is electrically isolated from the liner by an annular gap. The head has a third surface having an electrode lip extending downwardly from the third surface toward the second surface. The electrode lip has a fifth diameter between the second and fourth diameters. A spacing between the liner and electrode lips defines a labyrinth seal to generally prevent contaminants from entering the annular gap. The shaft has an annular groove configured to accept a boron nitride seal.