Abstract:
An intraluminal device having an adhesive primer coat formed of a carbonaceous material and a lubricious top coat of a hydrophilic polymeric material. The invention also comprises the methods of making such intraluminal devices. The primer coat of the invention may comprise pure carbon, or a carbon based material such as a polymer. Preferably, the primer coat has a thickness of about 0.1 to about 2 nullm. In a presently preferred embodiment, the primer coat is applied using chemical vapor deposition (CVD), but in certain embodiments, physical vapor deposition (PVD) may be suitable. The deposited primer coat forms an effective substrate for adhesion of the hydrophilic polymer top coat.
Abstract:
An apparatus for delivering devices. The apparatus comprises a catheter with an elongated shaft having a first lumen and a second lumen extending therethrough. The apparatus further comprises a distal section with a lumen in communication with a port in a distal end of the catheter and with the first lumen and the second lumen. The first lumen is configured for a first device and the second lumen is configured for a second device to be disposed therein. The apparatus further comprises a proximal adapter coupled to the elongated shaft with a first port in communication with the first lumen and a second port in communication with the second lumen.
Abstract:
This disclosure describes a method for crimping a stent with a polymer coating onto a catheter for percutaneous transluminal coronary angioplasty or other intraluminal interventions. The method comprises crimping the stent onto a catheter when the polymer coating is at a target temperature other than ambient temperature. The polymer coating can optionally comprise drug(s).
Abstract:
The bending flexibility profile of a stent closely matches the flexibilities of the stent delivery system on either side of the stent. In one embodiment, a stent has a longitudinal axis and at least one link attaching each ring to an adjacent ring. The links closest to the stent end rings have the greatest bending flexibility and the links closest to the center of the stent have the least bending flexibility.
Abstract:
An expandable stent is implanted in a body lumen, such as a coronary artery, peripheral artery, or other body lumen for treating an area of vulnerable plaque. The invention provides for a an intravascular stent having a plurality of cylindrical rings connected by undulating links. The stent has a high degree of flexibility in the longitudinal direction, yet has adequate vessel wall coverage and radial strength sufficient to hold open an artery or other body lumen. A central section is positioned between distal and proximal sections and is aligned with the area of vulnerable plaque to enhance growth of endothelial cells over the fibrous cap of the vulnerable plaque to reinforce the area and reduce the likelihood of rupture.
Abstract:
A radially expandable stent can comprise a proximal section tapering inward to a proximal end of the stent and a distal section tapering inward to a distal end of the stent. The tapered sections can be adapted to improve the attachment of the stent to the delivery system and to facilitate the delivery of the mounted stent into and through a bodily lumen.
Abstract:
Methods for making coatings on an implantable device such as a drug-eluting stent comprising a polymer and nano or microparticles of a drug in slow-dissolving polymorph, implantable devices produced by the methods and methods of using the coatings are provided.
Abstract:
The invention is directed to apparatus, methods and systems including a sheath for use with intracorporeal optical imaging instruments such as imaging guidewires, catheters, or endoscopes. The invention provides a sheath suitable for guiding an enclosed instrument, that is effective to guide the placement within a patient's body and replacement to a distal position after retraction of the imaging instrument, as during an imaging scan. The sheaths may include at least a portion that is translucent to a desired wavelength of radiation. The translucent portion may have an index of refraction similar to the index of refraction of a bodily fluid such as blood plasma, or an artificial fluid suitable for introduction into a body lumen.
Abstract:
A catheter having a polymeric reinforcing member at a junction between shaft sections such as a rapid exchange catheter junction. The polymeric reinforcing member is around or within the tubular member defining the inflation lumen or the tubular member defining the guidewire lumen at the rapid exchange junction to prevent or inhibit damage to the tubular members defining the inflation lumen and/or guidewire lumen during assembly or use of a balloon catheter. In one embodiment, the polymeric reinforcing member is formed of a first polymeric material having a glass transition temperature greater than a glass transition temperature of a second polymeric material forming the distal portion of the proximal tubular member or the proximal portion of the inner tubular member. The first polymeric material forming the polymeric reinforcing member is preferably a high temperature, high modulus material, such as polyimide, and most preferably a thermoset polyimide.