Abstract:
Provided are a driving device for a unit pixel of an organic light emitting display having an improved structure and a method of manufacturing the same.
Abstract:
A transistor may include a light-blocking layer that blocks light incident on a channel layer. The light-blocking layer may include a carbon-based material. The carbon-based material may include graphene oxide, graphite oxide, graphene or carbon nanotube (CNT). The light-blocking layer may be between a gate and at least one of the channel layer, a source and a drain.
Abstract:
An acousto-optic device includes an acousto-optic medium having a multi-layer nanostructure; and a sonic wave generator configured to apply sonic waves to the acousto-optic medium having the multi-layer nanostructure. The acousto-optic medium having the multi-layer nanostructure includes a second layer formed of at least two materials that have different dielectric constants and alternate with each other; and a first layer disposed on a first surface of the second layer and formed of a first material, and/or a third layer disposed on a second surface of the second layer and formed of a fourth material.
Abstract:
A memory device includes a lower electrode formed on a substrate, and an information storage unit formed on the lower electrode. The information storage unit includes a plurality of information storage layers spaced apart from one another. Each of the plurality of information storage layers is an information unit. A method of manufacturing a memory device uses a porous film to form the plurality of information storage layers.
Abstract:
Disclosed are a composition comprising an organic insulating polymer in which a photo-reactive functional group showing an increased crosslinking degree is introduced into a side-chain, an organic insulating film comprising the composition, an organic thin film transistor (OTFT) comprising the organic insulating film, an electronic device comprising the organic thin film transistor and methods of fabricating the organic insulating film, the organic thin film transistor and the electronic device. The OTFT comprising the organic insulating film of example embodiments may not show any hysteresis during the driving of the OTFT, and therefore, may exhibit a homogeneous property.
Abstract:
An ultra-high-strength steel wire rod having excellent resistance to delayed fracture includes, by wt %, 0.7-1.2% C, 0.25-0.5% Si, 0.5-0.8% Mn, 0.02-0.1% V and a balance of Fe and inevitable impurities. The method includes the steps of heating the above steel composition to 1100° C. or lower and hot rolling at a temperature of 900-1000° C., followed by cooling to 600-650° C. at a prescribed rate, followed by cold drawing at a reduction ratio of 60-80%.
Abstract:
A transistor includes a first active layer having a first channel region and a second active layer having a second channel region. A first gate of the transistor is configured to control electrical characteristics of at least the first active layer and a second gate is configured to control electrical characteristics of at least the second active layer. A source electrode contacts the first and second active layers. A drain electrode also contacts the first and second active layers.
Abstract:
Provided are a high-strength, high-toughness steel wire rod and a method of manufacturing the same. The steel wire rod has a composition including 0.07 wt % to 0.14 wt % of aluminum (Al) and nitrogen (N) wherein Al:N (where Al and N denote wt % of each element) is in a range of 15:1 to 25:1. Since a steel wire rod having sufficient strength and toughness improvement effects can be obtained with a simple alloy component, a steel wire rod capable of allowing processing such as cold forging to be performed without an additional heat treatment may be provided.
Abstract:
Disclosed herein are a method for fabricating an organic thin film transistor, including treating the surfaces of a gate insulating layer and source/drain electrodes with a self-assembled monolayer (SAM)-forming compound through a one-pot reaction, and an organic thin film transistor fabricated by the method. According to example embodiments, the surface-treatment of the gate insulating layer and the source/drain electrodes may be performed in a single vessel through a single process.
Abstract:
Disclosed is a composition, an organic insulating film including the same, an organic thin film transistor including the organic insulating film, an electronic device including the organic thin film transistor and methods of fabricating the same. In the composition, an organic polymer material having a carboxyl group and an organic silane material having an electron-donating group are included to thus realize a structure which may further stabilize an unreacted crosslinking material. Thereby, a hysteresis phenomenon may be decreased and transparency may be increased, thus making it possible to assure stability upon exposure to air. Accordingly, the lifetime of the organic thin film transistor may be lengthened.