Abstract:
An optical device for surface enhanced Raman spectroscopy includes a substrate, and at least one antenna established thereon. The at least one antenna including at least two segments, where each segment is formed of a metal having a predetermined volume and a predetermined contact angle with respect to the substrate. A gap is located between the two segments. The gap has a controllable size such that the at least one antenna resonates at a predetermined frequency that corresponds with the gap.
Abstract:
Systems and methods employ a layer having a pattern that provides multiple discrete guided mode resonances for respective couplings of separated wavelengths into the layer. Further, a structure including features shaped to enhance Raman scattering to produce light of the resonant wavelengths can be employed with the patterned layer.
Abstract:
Embodiments of the present invention are directed to systems for performing surface-enhanced Raman spectroscopy. In one embodiment, a system (100, 400, 600, 800, 900, 950) for performing Raman spectroscopy comprises a substrate (102) substantially transparent to a range of wavelengths of electromagnetic radiation and a plurality of nanowires (104, 602) disposed on a surface of the substrate. The nanowires are substantially transparent to the range of wavelengths of electromagnetic radiation. The system includes a material disposed on each of the nanowires. The electromagnetic radiation is transmitted within the substrate, into the nanowires, and emitted from the ends of the nanowires to produce enhanced Raman scattered light from molecules located on or in proximity to the material.
Abstract:
A tunable apparatus for performing Surface Enhanced Raman Spectroscopy (SERS) includes a deformable layer and a plurality of SERS-active nanoparticles disposed at one or more locations on the deformable layer, wherein the one or more locations are configured to be illuminated with light of a pump wavelength to cause Raman excitation light to interact with the nanoparticles and produce enhanced Raman scattered light from molecules located in close proximity to the nanoparticles. In addition, a morphology of the deformable layer is configured to be controllably varied to modify an intensity of the Raman scattered light produced from the molecules.
Abstract:
A memory device (100) includes a semiconductor wire including a source region (132), a drain region (134), and a channel region (130) between the source region (132) and the drain region (134). A gate structure that overlies the channel region includes a memristive portion (120) and a conductive portion (110) overlying the memristive portion (120).
Abstract:
Various embodiments of the present invention are direct to nanoscale, reconfigurable, two-terminal memristor devices. In one aspect, a device (400) includes an active region (402) for controlling the flow of charge carriers between a first electrode (104) and a second electrode (106). The active region is disposed between the first electrode and the second electrode and includes a storage material. Excess mobile oxygen ions formed within the active region are stored in the storage material by applying a first voltage.
Abstract:
A cleave plane is defined in a semiconductor donor body by implanting ions into the wafer. A lamina is cleaved from the donor body, and a photovoltaic cell is formed which comprises the lamina. The implant may cause some damage to the crystal structure of the lamina. This damage can be repaired by annealing the lamina using microwave energy. If the lamina is bonded to a receiver element, the receiver element may be either transparent to microwaves, or may reflect microwaves, while the semiconductor material absorbs the microwaves. In this way the lamina can be annealed at high temperature while the receiver element remains cooler.
Abstract:
Embodiments of the present invention provide a method of forming an electrical connection on a device. In one embodiment, the electrical connection is attached to the device via an adhesive having electrically conductive particles disposed therein. In one embodiment, the adhesive is cured while applying pressure such that the conductive particles align, have a reduced particle-to-particle spacing, or come into contact with each other to provide a more directly conductive (less resistive) path between the electrical connection and the device. In one embodiment of the present invention, a method for forming an electrical lead on a partially formed solar cell during formation of the solar cell device is provided. The method comprises placing a side-buss wire onto a pattern of electrically conductive adhesive disposed on a back contact layer of a solar cell device substrate, laminating the side-buss wire and electrically conductive adhesive between the solar cell device substrate and a back glass substrate to form a composite solar cell structure, and curing the electrically conductive adhesive while applying pressure and heat to the composite solar cell structure.
Abstract:
An apparatus and method for removing contaminants from a workpiece is described. Embodiments of the invention describe placing a workpiece on a holding bracket within a process chamber to hold and rotate the workpiece to be cleaned. A first cleaning fluid is provided to the workpiece non-device side, while a degasified liquid is provided to the workpiece device side during megasonic cleaning. The degasified liquid inhibits cavitation from occurring on and damaging the device side of the workpiece during megasonic cleaning.
Abstract:
An apparatus and method for removing contaminants from a workpiece is described. Embodiments of the invention describe placing a workpiece on a holding bracket within a process chamber to hold and rotate the workpiece to be cleaned. A first cleaning fluid is provided to the workpiece non-device side, while a degasified liquid is provided to the workpiece device side during megasonic cleaning. The degasified liquid inhibits cavitation from occurring on and damaging the device side of the workpiece during megasonic cleaning.