摘要:
The present invention provides a method for forming a shaped floating gate on an integrated circuit substrate. A trench is etched in a surface of the integrated circuit substrate such that a tip is formed. The tip may be defined by a first sidewall that is approximately perpendicular to the surface of the integrated circuit substrate and a second sidewall that is disposed at an angle to the surface of the integrated circuit substrate. A dielectric layer is then formed over the substrate surface and conforming to the trench. Next, a conductive layer is deposited above the dielectric layer such that it fills the trench. The conductive layer is then etched such that a floating gate is defined. A bottom portion of the floating gate is then contained by the trench. The resulting floating gate and semiconductor device includes a dielectric layer disposed above an integrated circuit substrate surface. The substrate surface defines a trench having a tip that may be defined by a first sidewall and a second sidewall. A conductive layer is formed above the dielectric layer such that it fills the trench and defines a floating gate having a tip contained by the trench. In addition, a diffusion region may be disposed in the integrated circuit substrate such that the tip of the floating gate points into the diffusion region.
摘要:
A sense amplifier places a low positive voltage, such as 0.1 to 0.3 volts, on a bit line instead of ground when a memory cell is read by utilizing a current source circuit to output a reference current that biases a Schottky diode. The current source circuit is implemented with a Schottky diode that utilizes the reverse-biased leakage current of the diode to form the reference current. The current source circuit can also be implemented with a current mirror circuit.
摘要:
A method for forming an electrically-programmable read-only-memory (EPROM) or a flash memory cell is disclosed. The EPROM or flash memory cell provides both source-side and drain-side injection, along with a reduced cell size, by forming the memory cell in a trench. The drain is formed in the top surface of the substrate, the source is formed in the bottom surface of the trench, and the stacked gate is formed over the sidewall of the trench.
摘要:
An EEPROM cell having a double-poly memory-transistor stacked-gate structure and a double-poly access-transistor stacked-gate structure is formed in a process that utilizes a thick layer of oxide as an etch stop when the layers of material are etched to form the memory-transistor stacked-gate structure and the access-transistor stacked-gate structure.
摘要:
An ESD protection device for use with an integrated circuit that provides a low impedance resistive path between IC pads (including Vdd and Vss pads) when power to the IC is off, while assuring adequate isolation between the IC pads when the power is on. The device includes a semiconductor substrate (typically a p-type Si substrate) and at least two vertically integrated pinch resistors formed in the semiconductor substrate. Each of the vertically integrated pinch resistors is connected to a common electrical discharge line and to a pad. Each of the vertically integrated pinch resistors includes a deep well region and a first surface well region, both of the second conductivity type (typically n-type). The first surface well region circumscribes the deep well region, thereby forming a narrow channel region of the first conductivity type (e.g. p-type) therebetween. When no potential is applied to the first surface well regions (i.e. power is off), the two vertically integrated pinch resistors connected by the common electrical discharge line provide a low impedance resistive path between the pads for shunting ESD current. When a potential is applied to the first surface well region by the IC power supply (i.e. power is on), however, the width of the narrow channel region is pinched-off due to a potential-produced depletion region in the narrow channel region, thereby isolating the pads from each other. A process for the formation of the ESD protection device involves sequential formation of each of the device regions in a semiconductor substrate.
摘要:
An analog circuit starter current source device with automatic shut-down capability. The device includes a semiconductor substrate (typically p-type) with a deep well region (typically n-type) below its surface, a first surface well region (typically n-type) on the surface of the substrate that circumscribes the deep well region, and a narrow channel region (typically p-type) separating the deep well region from the first surface well region. The device also includes a first contact region for connecting the first surface well region to the analog circuit, and a second contact region for connecting a substrate region above the deep well to the analog circuit. The configuration provides a variable-width vertical resistor current path capable of starting an analog circuit and then being automatically shut-down by application of a potential to the first contact region sufficient to produce a depletion region that pinches-off the narrow channel region. A process for forming the starter current source device is also provided. The process includes first providing a semiconductor substrate (e.g. p-type), then forming a deep well region (e.g. n-type) below its surface. This is followed by the formation of a first surface well region (e.g. n-type) on the surface of the substrate such that the first surface well region circumscribes the deep well region, thereby producing a narrow channel (e.g. p-type) therebetween. Finally, a first contact region is formed on the surface of the first surface well region, while a second contact region is formed on the surface of semiconductor substrate above the deep well region.
摘要:
A semiconductor device is described, incorporating electron traps at the interface between a semiconductor substrate and a gate dielectric layer of an insulated gate field effect transistor, such device being capable of retaining charge in the electron traps for a certain time, allowing volatile memory circuits to be produced wherein each cell occupies only the area required for a single transistor.
摘要:
A structure is provided for improving the adhesion between a photoresist layer and a dielectric, and an integrated circuit formed according to the same. A conformal dielectric layer is formed over the integrated circuit. An interlevel dielectric layer is formed over the conformal dielectric layer. The interlevel dielectric layer is doped such that the doping concentration allows the layer to reflow while partially inhibiting the adhesion of the doped layer to photoresist at an upper surface of the doped layer. An undoped dielectric layer is formed over the doped dielectric layer. A photoresist layer is formed and patterned over the undoped dielectric layer which adheres to the undoped dielectric layer. The undoped dielectric, the interlevel dielectric and the conformal dielectric layers are etched to form an opening exposing a portion of an underlying conductive region.
摘要:
A method is provided for forming a polysilicon buried contact of an integrated circuit, and an integrated circuit formed according to the same. A field oxide region is formed over a portion of a substrate leaving an exposed active region. An oxide layer is formed over the active region. A first photoresist layer is formed and patterned over the first silicon layer. The first silicon layer is then etched to form an opening therethrough to expose a portion of the oxide layer. The oxide layer is etched through the opening to expose a portion of the substrate. a conductive etch stop layer is formed over the exposed portion of the substrate and the first photoresist layer. The first photoresist layer and the etch stop layer overlying the first photoresist layer are then removed. A second silicon layer is formed over the first silicon layer and the remaining etch stop layer. A second photoresist layer is formed and patterned over the second silicon layer. The first and second silicon layers are then etched to form a conductive structure contacting the exposed portion of the substrate through the etch stop layer.
摘要:
This disclosure relates to a semiconductor device including resistor arrangement including a first resistor electrically connected to a ground voltage and a second resistor in direct physical contact with the first resistor. The second resistor is configured to receive a temperature independent current and the second resistor has thermal properties similar to those of the first resistor. This disclosure also relates to a semiconductor device including a load configured to receive an operating voltage and a voltage source configured to supply the operating voltage. The semiconductor device further includes a resistor arrangement between the load and the voltage source. This disclosure also relates to a method of using a resistor arrangement to calculate an operating current.