摘要:
A method and a semiconductor device are provided in which respective contact layers having a specific intrinsic stress may be directly formed on respective metal silicide regions without undue metal silicide degradation during an etch process for removing an unwanted portion of an initially deposited contact layer. Moreover, due to the inventive concept, the strain-inducing contact layers may be formed directly on the respective substantially L-shaped spacer elements, thereby enhancing even more the stress transfer mechanism.
摘要:
By removing an outer spacer, used for the formation of highly complex lateral dopant profiles, prior to the formation of metal silicide, a high degree of process compatibility with conventional processes is obtained, while at the same time a contact liner layer may be positioned more closely to the channel region, thereby allowing a highly efficient stress transfer mechanism for creating a corresponding strain in the channel region.
摘要:
By providing an asymmetric design of a halo region and extension regions of a field effect transistor, the transistor performance may significantly be enhanced for a given basic transistor architecture. In particular, a large overlap area may be created at the source side with a steep concentration gradient of the PN junction due to the provision of the halo region, whereas the drain overlap may be significantly reduced or may even completely be avoided, wherein a moderately reduced concentration gradient may further enhance the transistor performance.
摘要:
The present invention allows the formation of sidewall spacers adjacent a feature on a substrate without there being an undesirable erosion of the feature. The feature is covered by one or more protective layers. A layer of a spacer material is deposited over the feature and etched anisotropically. An etchant used in the anisotropic etching is adapted to selectively remove the spacer material, whereas the one or more protective layers are substantially not affected by the etchant. Thus, the one or more protective layers protect the feature from being exposed to the etchant.
摘要:
By reducing a deposition rate and maintaining a low bias power in a plasma atmosphere, a spacer layer, for example a silicon nitride layer, may be deposited that exhibits tensile stress. The amount of tensile stress is controllable within a wide range, thereby providing the potential for forming sidewall spacer elements that modify the charge carrier mobility and thus the conductivity of the channel region of a field effect transistor.
摘要:
A silicon dioxide material may be provided in sophisticated semiconductor devices in the form of a double liner including an undoped silicon dioxide material in combination with a high density plasma silicon dioxide, thereby providing reduced dependency on pattern density. In some illustrative embodiments, the silicon dioxide double liner may be used as a spacer material and as a hard mask material in process strategies for incorporating a strain-inducing semiconductor material.
摘要:
During the formation of sophisticated gate electrode structures, a replacement gate approach may be applied in which plasma assisted etch processes may be avoided. To this end, one of the gate electrode structures may receive an intermediate etch stop liner, which may allow the replacement of the placeholder material and the adjustment of the work function in a later manufacturing stage. The intermediate etch stop liner may not negatively affect the gate patterning sequence.
摘要:
A spacer structure in sophisticated semiconductor devices is formed on the basis of a high-k dielectric material, which provides superior etch resistivity compared to conventionally used silicon dioxide liners. Consequently, a reduced thickness of the etch stop material may nevertheless provide superior etch resistivity, thereby reducing negative effects, such as dopant loss in the drain and source extension regions, creating a pronounced surface topography and the like, as are typically associated with conventional spacer material systems.
摘要:
In a dual stress liner approach, unwanted material provided between closely spaced gate electrode structures may be removed to a significant degree on the basis of a wet chemical etch process, thereby reducing the risk of creating patterning-related irregularities. Consequently, the probability of contact failures in sophisticated interlayer dielectric material systems formed on the basis of a dual stress liner approach may be reduced.
摘要:
Gate failures in sophisticated high-k metal gate electrode structures formed in an early manufacturing stage may be reduced by forming a protective liner material after the incorporation of a strain-inducing semiconductor alloy and prior to performing any critical wet chemical processes. In this manner, attacks in the sensitive gate materials after the incorporation of the strain-inducing semiconductor material may be avoided, without influencing the further processing of the device. In this manner, very sophisticated circuit designs may be applied in sophisticated gate first approaches.