Abstract:
The present application discloses an array substrate comprising a first substrate, a first electrode on the first substrate, a passivation layer on a side of the first electrode distal to the first substrate, the passivation layer comprising a plurality of first vias, each of which corresponds to a different part of the first electrode, an electron emission source layer on a side of the first electrode distal to the first substrate comprising at least one electron emission source in each of the plurality of first vias, and a dielectric layer on a side of the first electrode distal to the first substrate comprising a plurality of dielectric blocks corresponding to the plurality of first vias, at least a portion of each of the plurality of dielectric blocks in each of the plurality of first vias. The at least one electron emission source comprises a first portion having a first end and a second portion having a second end. The first end is in contact with the first electrode, the first portion is within a corresponding one of the plurality of dielectric blocks. The second portion and the second end are outside the corresponding one of the plurality of dielectric blocks.
Abstract:
The embodiments of the present application relate to the technical field of touch display device, and disclose a touch display device, including a touch display panel and a control unit arranged on a side of the touch display panel, with a first wiring area being arranged between the touch display panel and the control unit; wherein a plurality of data connection lines and a plurality of touch connection lines are led out of a side edge of the touch display panel, the plurality of data connection lines being connected with a plurality of data pins on the control unit in a one-to-one correspondence manner, while the plurality of touch connection lines being connected with a plurality of touch pins on the control unit in a one-to-one correspondence manner; and wherein within the first wiring area, the plurality of data connection lines are divided into two wiring layers, the plurality of touch connection lines being arranged at least in layer in which one wiring layer of the data connection lines are located. According to the above technical scheme, by arranging the data connection lines in a layering manner, a bezel width occupied by the data connection lines is reduced, and influence of the data connection lines on the bezel width is in turn reduced, facilitating development of the slim bezel of the touch display device.
Abstract:
Embodiments of the present application provide a method and a device for acquiring ECG data, and an ECG detection system. A method for acquiring ECG data, comprising: acquiring ECG signals of heart; performing a first-stage amplification on the ECG signals, a multiple of the first-stage amplification including 5 to 10 times; performing band-pass filtering process within a first frequency range on the ECG signals on which the first-stage amplification has been performed, the first frequency range being 0.1 Hz to 50 Hz; performing a second-stage amplification on the ECG signals on which the band-pass filtering process has been performed, a multiple of the second-stage amplification including 40 to 50 times; performing analog-to-digital conversion on the ECG signals on which the second-stage amplification has been performed, to generate ECG digital signals; and outputting the ECG digital signals.
Abstract:
An in-cell touch panel and a display device are disclosed. The in-cell touch panel includes an array substrate provided with a plurality of sub-pixels, and a plurality of gate lines and a plurality of data lines that are disposed on the array substrate, intersected with each other and insulated from each other, a plurality of self capacitive electrodes which are disposed in a same layer and independent of each other, and a plurality of touch lines connecting the self capacitive electrodes to the touch detection chip; the plurality of gate lines and the plurality of data lines are intersected with each other to define the plurality of sub-pixels; each of the sub-pixels includes a pixel electrode and is configured with a long side and a short side; and the touch lines are disposed along the direction of short sides of the sub-pixels.
Abstract:
The present invention provides an array substrate and a manufacturing method thereof, a display panel and a display apparatus. The array substrate comprises: a base substrate; and a pixel region and a periphery region formed on the base substrate, wherein the periphery region is located around the pixel region, the pixel region comprises an amorphous silicon thin film transistor, and the periphery region comprises a low temperature poly-silicon structure. As the a-Si thin film transistor is used in the pixel region of the array substrate, the problem that there is a too large leakage current in the pixel region of the LTPS array substrate in the prior art is overcome, the leakage current in the pixel region is reduced, while as the LTPS structure is used in the periphery region of the array substrate, a narrow frame of the display panel and the display apparatus may be achieved.
Abstract:
The present disclosure provides a shift register, a display device, and a method for driving the display device. A pull-down module and a stop module are added in the shift register. When a full screen picture is displayed, the signal output port outputs a high-level signal to the gate line connected with the signal output port, such that the gate line scans the display panel of the display device normally. The pull-down module may maintain the pull-up node and the signal output port at a low-level during the non-working time of the shift register, so as to prevent the shift register from outputting noise. When a local picture is displayed, under the control of the stop signal input port Stop, the stop module outputs the low-level signal to the gate line connected with the signal output port, such that the gate line stops scanning the display panel.
Abstract:
An array substrate, a display device and a control method thereof are disclosed. The array substrate includes a plurality of gate lines and a plurality of data lines which are intercrossed to define pixels arranged in an array. The gate lines include n gate line groups and n+1 main gate lines; each gate line group includes a first gate line and a second gate line which are adjacent to each other; the first gate line is provided corresponding to a first transistor, and the second gate line is provided corresponding to a second transistor and a switching element; both the first gate line and the second gate line in the ith gate line group are connected with the ith main gate line; a gate electrode of the first transistor is connected with the first gate line, a source electrode connected with a corresponding data line, a drain electrode connected with a pixel electrode; a gate electrode of the second transistor is connected with one end of the switching element in a pixel unit, a source electrode connected with a corresponding data line, a drain electrode connected with a pixel electrode; and the other end of the switching element is connected with a main gate line in the (i+1)th row and configured to control on/off operation of the second transistor.
Abstract:
Disclosed are a barometric pressure sensor and a method for preparing the same, and an electronic device, which relate to the technical field of sensors. The barometric pressure sensor includes a base substrate, and a first capacitor provided on a side of the base substrate. The first capacitor includes a first bottom electrode provided close to the base substrate; a first insulating layer provided on a side of the first bottom electrode away from the base substrate; and a first top electrode provided on a side of the first insulating layer away from the base substrate. The first top electrode is provided with a first opening which is configured to expose the first insulating layer at a corresponding position. A dielectric constant of the first insulating layer may vary with different humidity environments, so that a capacitance value of the first capacitor varies.
Abstract:
The present disclosure provides a picture processing method and device, including: an integrated circuit chip IC receiving a to-be-processed picture sent by a graphics processor GPU; the IC pre-processing the to-be-processed picture; the IC performing counter-distortion process on the pre-processed picture; and the IC outputting the picture which is subjected to the counter-distortion process for display.
Abstract:
The present disclosure provides a light adjusting glass, including a light transmitting substrate and a light adjusting functional layer, where the light transmitting substrate includes a first substrate and a second substrate which are disposed opposite to each other, the light adjusting functional layer is disposed between the first substrate and the second substrate, and the light adjusting functional layer includes at least two liquid crystal cells; the liquid crystal cells are disposed in a laminated mode, and each of the liquid crystal cells has a liquid crystal layer including dye liquid crystal.