摘要:
An FET structure on a semiconductor substrate which includes forming recesses for a source and a drain of the gate structure on a semiconductor substrate, halo implanting regions through the bottom of the source and drain recesses, the halo implanted regions being underneath the gate stack, implanting junction butting at the bottom of the source and drain recesses, and filling the source and drain recesses with a doped epitaxial material. In exemplary embodiments, the semiconductor substrate is a semiconductor on insulator substrate including a semiconductor layer on a buried oxide layer. In exemplary embodiments, the junction butting and halo implanted regions are in contact with the buried oxide layer. In other exemplary embodiments, there is no junction butting. In exemplary embodiments, halo implants implanted to a lower part of the FET body underneath the gate structure provide higher doping level in lower part of the FET body to reduce body resistance, without interfering with FET threshold voltage.
摘要:
A field effect transistor (FET) structure on a semiconductor substrate which includes a gate structure having a spacer on a semiconductor substrate; an extension implant underneath the gate structure; a recessed source and a recessed drain filled with a doped epitaxial material; halo implanted regions adjacent a bottom of the recessed source and drain and being underneath the gate stack. In an exemplary embodiment, there is implanted junction butting underneath the bottom of each of the recessed source and drain, the junction butting being separate and distinct from the halo implanted regions. In another exemplary embodiment, the doped epitaxial material is graded from a lower dopant concentration at a side of the recessed source and drain to a higher dopant concentration at a center of the recessed source and drain. In a further exemplary embodiment, the semiconductor substrate is a semiconductor on insulator substrate.
摘要:
A trench and method of fabrication is disclosed. The trench shape is cylindrosymmetric, and is created by forming a dopant profile that is monotonically increasing in dopant concentration level as a function of depth into the substrate. A dopant sensitive etch is then performed, resulting in a trench shape providing increased surface area, yet having relatively smooth trench walls.
摘要:
A pair of horizontal-step-including trenches are formed in a semiconductor layer by forming a pair of first trenches having a first depth around a gate structure on the semiconductor layer, forming a disposable spacer around the gate structure to cover proximal portions of the first trenches, and by forming a pair of second trenches to a second depth greater than the first depth. The disposable spacer is removed, and selective epitaxy is performed to form an integrated epitaxial source and source extension region and an integrated epitaxial drain and drain extension region. A replacement gate structure can be formed after deposition and planarization of a planarization dielectric layer and subsequent removal of the gate structure and laterally expand the gate cavity over expitaxial source and drain extension regions. Alternately, a contact-level dielectric layer can be deposited directly on the integrated epitaxial regions and contact via structures can be formed therein.
摘要:
Dopants of a first conductivity type are implanted into a top portion of a semiconductor substrate having a doping of the first conductivity type to increase the dopant concentration in the top portion, which is a first-conductivity-type semiconductor layer. A semiconductor material layer having a doping of the second conductivity type, a buried insulator layer, and a top semiconductor layer are formed thereupon. Deep trenches having a narrow width have a bottom surface within the second-conductivity-type semiconductor layer, which functions as a buried plate. Deep trenches having a wider width are etched into the first-conductivity-type layer underneath, and can be used to form an isolation structure. The additional dopants in the first-conductivity-type semiconductor layer provide a counterdoping against downward diffusion of dopants of the second conductivity type to enhance electrical isolation.
摘要:
An FET structure on a semiconductor substrate which includes forming recesses for a source and a drain of the gate structure on a semiconductor substrate, halo implanting regions through the bottom of the source and drain recesses, the halo implanted regions being underneath the gate stack, implanting junction butting at the bottom of the source and drain recesses, and filling the source and drain recesses with a doped epitaxial material. In exemplary embodiments, the semiconductor substrate is a semiconductor on insulator substrate including a semiconductor layer on a buried oxide layer. In exemplary embodiments, the junction butting and halo implanted regions are in contact with the buried oxide layer. In other exemplary embodiments, there is no junction butting. In exemplary embodiments, halo implants implanted to a lower part of the FET body underneath the gate structure provide higher doping level in lower part of the FET body to reduce body resistance, without interfering with FET threshold voltage.
摘要:
A field effect transistor (FET) structure on a semiconductor substrate which includes a gate structure having a spacer on a semiconductor substrate; an extension implant underneath the gate structure; a recessed source and a recessed drain filled with a doped epitaxial material; halo implanted regions adjacent a bottom of the recessed source and drain and being underneath the gate stack. In an exemplary embodiment, there is implanted junction butting underneath the bottom of each of the recessed source and drain, the junction butting being separate and distinct from the halo implanted regions. In another exemplary embodiment, the doped epitaxial material is graded from a lower dopant concentration at a side of the recessed source and drain to a higher dopant concentration at a center of the recessed source and drain. In a further exemplary embodiment, the semiconductor substrate is a semiconductor on insulator substrate.
摘要:
A method of forming a trench structure that includes forming a metal containing layer on at least the sidewalls of a trench, and forming an undoped semiconductor fill material within the trench. The undoped semiconductor fill material and the metal containing layer are recessed to a first depth within the trench with a first etch. The undoped semiconductor fill material is then recessed to a second depth within the trench that is greater than a first depth with a second etch. The second etch exposes at least a sidewall portion of the metal containing layer. The trench is filled with a doped semiconductor containing material fill, wherein the doped semiconductor material fill is in direct contact with the at least the sidewall portion of the metal containing layer.
摘要:
A method of forming a trench structure that includes forming a metal containing layer on at least the sidewalls of a trench, and forming an undoped semiconductor fill material within the trench. The undoped semiconductor fill material and the metal containing layer are recessed to a first depth within the trench with a first etch. The undoped semiconductor fill material is then recessed to a second depth within the trench that is greater than a first depth with a second etch. The second etch exposes at least a sidewall portion of the metal containing layer. The trench is filled with a doped semiconductor containing material fill, wherein the doped semiconductor material fill is in direct contact with the at least the sidewall portion of the metal containing layer.
摘要:
A trench capacitor and method of fabrication are disclosed. The SOI region is doped such that a selective isotropic etch used for trench widening does not cause appreciable pullback of the SOI region, and no spacers are needed in the upper portion of the trench.