摘要:
A method of making a non-volatile memory cell includes forming a plurality of discrete storage elements. A tensile dielectric layer is formed among the discrete storage elements and provides lateral tensile stress to the discrete storage elements. A gate is formed over the discrete storage elements.
摘要:
Embodiments include a split-gate non-volatile memory cell that is formed having a control gate and a select gate, where at least a portion of the control gate is formed over the select gate. A charge storage layer is formed between the select gate and the control gate. The select gate is formed using a first conductive layer and a second conductive layer. The second conductive layer is formed over the first conductive layer and has a lower resistivity than the first conductive layer. In one embodiment, the first conductive layer is polysilicon and the second conductive layer is titanium nitride (TiN). In another embodiment, the second conductive layer may be a silicide or other conductive material, or combination of conductive materials having a lower resistivity than the first conductive layer.
摘要:
A method for forming a split-gate non-volatile memory (NVM) cell includes forming a first gate layer over a semiconductor substrate; forming a conductive layer over the first gate layer; patterning the first gate layer and the conductive layer to form a first sidewall, wherein the first sidewall comprises a sidewall of the first gate layer and a sidewall of the conductive layer; forming a first dielectric layer over the conductive layer and the semiconductor substrate, wherein the first dielectric layer overlaps the first sidewall; forming a second gate layer over the first dielectric layer, wherein the second gate layer is formed over the conductive layer and the first gate layer and overlaps the first sidewall; and patterning the first gate layer and the second gate layer to form a first gate and a second gate, respectively, of the split-gate NVM cell, wherein the second gate overlaps the first gate and a portion of the conductive layer remains between the first gate and the second gate.
摘要:
A method for forming a semiconductor device includes forming a dielectric layer over a substrate. The method further includes forming a select gate layer over the dielectric layer. The method further includes etching the select gate layer at a first etch rate to form a first portion of a sidewall of a select gate, wherein the step of etching the select gate layer at the first etch rate includes using an oxidizing agent to oxidize at least a top portion of the substrate underlying the dielectric layer to form an oxide layer. The method further includes etching the select gate layer at a second etch rate lower than the first etch rate to form a second portion of the sidewall of the select gate, wherein the step of etching the select gate layer at the second etch rate includes removing only a top portion of the dielectric layer.
摘要:
A method for forming a semiconductor device includes forming a dielectric layer over a substrate. The method further includes forming a select gate layer over the dielectric layer. The method further includes etching the select gate layer at a first etch rate to form a first portion of a sidewall of a select gate, wherein the step of etching the select gate layer at the first etch rate includes using an oxidizing agent to oxidize at least a top portion of the substrate underlying the dielectric layer to form an oxide layer. The method further includes etching the select gate layer at a second etch rate lower than the first etch rate to form a second portion of the sidewall of the select gate, wherein the step of etching the select gate layer at the second etch rate includes removing only a top portion of the dielectric layer.
摘要:
A method of making a semiconductor device on a semiconductor layer includes: forming a gate dielectric over the semiconductor layer; forming a layer of gate material over the gate dielectric; etching the layer of gate material to form a select gate; forming a storage layer that extends over the select gate and over a portion of the semiconductor layer; depositing an amorphous silicon layer over the storage layer; etching the amorphous silicon layer to form a control gate; and annealing the semiconductor device to crystallize the amorphous silicon layer.
摘要:
A transistor having a source with higher resistance than its drain is optimal as a pull-up device in a storage circuit. The transistor has a source region having a source implant having a source resistance. The source region is not salicided. A control electrode region is adjacent the source region for controlling electrical conduction of the transistor. A drain region is adjacent the control electrode region and opposite the source region. The drain region has a drain implant that is salicided and has a drain resistance. The source resistance is more than the drain resistance because the source region having a physical property that differs from the drain region.
摘要:
A method is disclosed for making a non-volatile memory cell on a semiconductor substrate. A select gate structure is formed over the substrate. The control gate structure has a sidewall. An epitaxial layer is formed on the substrate in a region adjacent to the sidewall. A charge storage layer is formed over the epitaxial layer. A control gate is formed over the charge storage layer. This allows for in-situ doping of the epitaxial layer under the select gate without requiring counterdoping. It is beneficial to avoid counterdoping because counterdoping reduces charge mobility and increases the difficulty in controlling threshold voltage. Additionally there may be formed a recess in the substrate and the epitaxial layer is formed in the recess, and a halo implant can be performed, prior to forming the epitaxial layer, through the recess into the substrate in the area under the select gate.
摘要:
A split-gate memory device has a select gate having a first work function overlying a first portion of a substrate. A control gate having a second work function overlies a second portion of the substrate proximate the first portion. When the majority carriers of the split-gate memory device are electrons, the first work function is greater than the second work function. When the majority carriers of the split-gate memory device are holes, the first work function is less than the second work function. First and second current electrodes in the substrate are separated by a channel that underlies the control gate and select gate. The differing work functions of the control gate and the select gate result in differing threshold voltages for each gate to optimize device performance. For an N-channel device, the select gate is P conductivity and the control gate is N conductivity.
摘要:
An electronic device can include a transistor structure of a first conductivity type, a field isolation region, and a layer of a first stress type overlying the field isolation region. For example, the transistor structure may be a p-channel transistor structure and the first stress type may be tensile, or the transistor structure may be an n-channel transistor structure and the first stress type may be compressive. The transistor structure can include a channel region that lies within an active region. An edge of the active region includes the interface between the channel region and the field isolation region. From a top view, the layer can include an edge the lies near the edge of the active region. The positional relationship between the edges can affect carrier mobility within the channel region of the transistor structure.