摘要:
The present disclosure provides a semiconductor device and a semiconductor memory device. The semiconductor device can be used as a memory cell, and may comprise a first P-type semiconductor layer, a first N-type semiconductor layer, a second P-type semiconductor layer, and a second N-type semiconductor layer arranged in sequence. A first data state may be stored in the semiconductor device by applying a forward bias, which is larger than a punch-through voltage VBO, between the first P-type semiconductor layer and the second N-type semiconductor layer. A second data state may be stored in the semiconductor device by applying a reverse bias, which is approaching to the reverse breakdown region of the semiconductor device, between the first P-type semiconductor layer and the second N-type semiconductor layer. In this way, the semiconductor device may be effectively used for data storage. The semiconductor memory device comprises an array of memory cells consisted of the semiconductor devices.
摘要:
A graphene device structure and a method for manufacturing the same are provided. The graphene device structure comprises: a graphene layer; a gate region formed on the graphene layer; and a doped semiconductor region formed at one side of the gate region and connected with the graphene layer, wherein the doped semiconductor region is a drain region of the graphene device structure, and the graphene layer formed at one side of the gate region is a source region of the graphene device structure. The on/off ratio of the graphene device structure may be improved by the doped semiconductor region without increasing the band gaps of the graphene material, so that the applicability of the graphene material in CMOS devices may be enhanced without decreasing the carrier mobility of graphene materials and speed of the devices.
摘要:
The invention relates to a transistor and a method for manufacturing the transistor. The transistor according to an embodiment of the invention may comprise: a substrate which comprises at least a back gate of the transistor, an insulating layer and a semiconductor layer stacked sequentially, wherein the back gate of the transistor is used for adjusting the threshold voltage of the transistor; a gate stack formed on the semiconductor layer, wherein the gate stack comprises a gate dielectric and a gate electrode formed on the gate dielectric; a spacer formed on sidewalls of the gate stack; and a source region and a drain region located on both sides of the gate stack, respectively, wherein the height of the gate stack is lower than the height of the spacer. The transistor enables the height of the gate stack to be reduced and therefore the performance of the transistor is improved.
摘要:
A semiconductor device and a method of manufacturing the same are provided. The semiconductor device has a metal sidewall spacer on the sidewall of a gate electrode on the drain region side. The metal sidewall spacer is made of such metals as Ta, which has an oxygen scavenging effect and can effectively reduce EOT on the drain region side, and thus the ability to control the short channel is effectively increased. In addition, since EOT on the source region side is larger, the carrier mobility of the device will not be degraded. Moreover, such asymmetric device may have a better driving performance.
摘要:
Methods are disclosed for forming self-aligned dual stressed layers for enhancing the performance of NFETs and PFETs. In one embodiment, a sacrificial layer is used to remove a latter deposited stressed layer. A mask position used to pattern the sacrificial layer is adjusted such that removal of the latter deposited stressed layer, using the sacrificial layer, leaves the dual stress layers in an aligned form. The methods result in dual stressed layers that do not overlap or underlap, thus avoiding processing problems created by those issues. A semiconductor device including the aligned dual stressed layers is also disclosed.
摘要:
The invention relates to a transistor and a method for manufacturing the transistor. The transistor according to an embodiment of the invention may comprise: a substrate which comprises at least a back gate of the transistor, an insulating layer and a semiconductor layer stacked sequentially, wherein the back gate of the transistor is used for adjusting the threshold voltage of the transistor; a gate stack formed on the semiconductor layer, wherein the gate stack comprises a gate dielectric and a gate electrode formed on the gate dielectric; a spacer formed on sidewalls of the gate stack; and a source region and a drain region located on both sides of the gate stack, respectively, wherein the height of the gate stack is lower than the height of the spacer. The transistor enables the height of the gate stack to be reduced and therefore the performance of the transistor is improved.
摘要:
A semiconductor device and a method of manufacturing the same are provided. The semiconductor device has a metal sidewall spacer on the sidewall of a gate electrode on the drain region side. The metal sidewall spacer is made of such metals as Ta, which has an oxygen scavenging effect and can effectively reduce EOT on the drain region side, and thus the ability to control the short channel is effectively increased. In addition, since EOT on the source region side is larger, the carrier mobility of the device will not be degraded. Moreover, such asymmetric device may have a better driving performance.
摘要:
A stack-type semiconductor device includes a semiconductor substrate; and a plurality of wafer assemblies arranged in various levels on the semiconductor substrate, in which the wafer assembly in each level includes an active part and an interconnect part, and the active part and the interconnect part each have conductive through vias, wherein the conductive through vias in the active part are aligned with the conductive through vias in the interconnect part in a vertical direction, so that the active part in each level is electrically coupled with the active part in the previous level and/or the active part in the next level by the conductive through vias. Such a stack-type semiconductor device and the related methods can be applied in a process after the FEOL or in a semiconductor chip packaging process and provide a 3-dimensional semiconductor device of high integration and high reliability.
摘要:
The invention discloses a semiconductor structure comprising: a substrate, a conductor layer, and a dielectric layer surrounding the conductor layer on the substrate; a first insulating layer covering both of the conductor layer and the dielectric layer; a gate conductor layer formed on the first insulating layer, and a dielectric layer surrounding the gate conductor layer; and a second insulating layer covering both of the gate conductor layer and the dielectric layer surrounding the gate conductor layer; wherein a through hole filled with a semiconductor material penetrates through the gate conductor layer perpendicularly, the bottom of the through hole stops on the conductor layer, and a first conductor plug serving as a drain/source electrode is provided on the top of the through hole; and a second conductor plug serving as a source/drain electrode electrically contacts the conductor layer, and a third conductor plug serving as a gate electrode electrically contacts the gate conductor layer.
摘要:
The invention relates to a semiconductor device and a method for manufacturing such a semiconductor device. A semiconductor device according to an embodiment of the invention comprises: a substrate which comprises a base layer, an insulating layer on the base layer, and a semiconductor layer on the insulating layer; and a first transistor and a second transistor formed on the substrate, the first and second transistors being isolated from each other by a trench isolation structure formed in the substrate. Wherein at least a part of the base layer under at least one of the first and second transistors is strained, and the strained part of the base layer is adjacent to the insulating layer. The semiconductor device according to the invention increases the speed of the device and thus improves the performance of the device.