LATTICE STACK FOR INTERNAL SPACER FABRICATION

    公开(公告)号:US20230134379A1

    公开(公告)日:2023-05-04

    申请号:US17517925

    申请日:2021-11-03

    Abstract: Techniques are provided herein to form gate-all-around (GAA) semiconductor devices, such as those having a stacked transistor configuration. In one example case, two different semiconductor devices may both be GAA transistors each having any number of nanoribbons extending in the same (e.g., horizontal) direction where one device is located vertically above the other device. An internal spacer structure extends between the nanoribbons of both devices along the vertical direction, where the spacer structure includes one or more rib features between the two devices. A gate structure that includes one or more gate dielectric layers and one or more gate electrode layers may be formed around the nanoribbons of both devices, in some cases. In other cases, a split-gate configuration is used where upper and lower gate structures are separated by an isolation structure. Forksheet transistors and other GAA configurations may be formed using the techniques as well.

    GATE-TO-GATE ISOLATION FOR STACKED TRANSISTOR ARCHITECTURE VIA NON-SELECTIVE DIELECTRIC DEPOSITION STRUCTURE

    公开(公告)号:US20230037957A1

    公开(公告)日:2023-02-09

    申请号:US17444678

    申请日:2021-08-09

    Abstract: An integrated circuit structure having a stacked transistor architecture includes a first semiconductor body (e.g., set of one or more nanoribbons) and a second semiconductor body (e.g., set of one or more nanoribbons) above the first semiconductor body. The first and second semiconductor bodies are part of the same fin structure. The distance between an upper surface of the first semiconductor body and a lower surface of the second semiconductor body is 60 nm or less. A first gate structure is on the first semiconductor body, and a second gate structure is on the second semiconductor body. An isolation structure that includes a dielectric material is between the first and second gate structures, and on the first gate structure. In addition, at least a portion of the second gate structure is on a central portion of the isolation structure and between first and second end portions of the isolation structure.

    INDEPENDENT DOUBLE-GATE QUANTUM DOT QUBITS

    公开(公告)号:US20220147858A1

    公开(公告)日:2022-05-12

    申请号:US17583264

    申请日:2022-01-25

    Abstract: Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include a base and a fin extending away from the base and including a quantum well layer. The device may further include a first gate disposed on a first side of the fin and a second gate disposed on a second side of the fin, different from the first side. Providing gates on different sides of a fin advantageously allows increasing the number of quantum dots which may be independently formed and manipulated in the fin. The quantum dots formed in such a device may be constrained in the x-direction by the one or more gates, in the y-direction by the fin, and in the z-direction by the quantum well layer, as discussed in detail herein. Methods for fabricating such devices are also disclosed.

Patent Agency Ranking