摘要:
An implantable microstimulator configured to be implanted beneath a patient's skin for tissue stimulation employs a bi-directional RF telemetry link for allowing data-containing signals to be sent to and from the implantable microstimulator from at least two external devices. Further, a separate electromagnetic inductive telemetry link allows data containing signals to be sent to the implantable microstimulator from at least one of the two external devices. The RF bidirectional telemetry link allows the microstimulator to inform the patient or clinician regarding the status of the microstimulator device, including the charge level of a power source, and stimulation parameter states. The microstimulator has a cylindrical hermetically sealed case having a length no greater than about 27 mm and a diameter no greater than about 3.3 mm. A reference electrode is located on one end of the case and an active electrode is located on the other end of the case.
摘要:
An implantable system control unit (SCU) includes means for measuring tissue impedance or other condition to determine allograft health, in order to predict or detect allograft rejection. The SCU also includes at least two electrodes coupled to means for delivering electrical stimulation to a patient within whom the device is implanted, and may also include a reservoir for holding one or more drugs and a driver means for delivering the drug(s) to the patient. In certain embodiments, the system is capable of open- and closed-loop operation. In closed-loop operation, at least one SCU includes a sensor, and the sensed condition is used to adjust stimulation parameters. Alternatively, this sensory “SCU” sounds an alarm, communicates an alarm to an external device, and/or is responsive to queries regarding sensed information, such as tissue impedance.
摘要:
The stimulation device blanks T-waves from the atrial channel of an electrical cardiac signal by employing a T-wave blanking interval localized to the expected location and duration of the T-wave. To this end, the stimulation device determines the average interval between an R-wave and a T-wave in the patient in which the device is implanted and also determines the average duration of a T-wave within the patient. A T-wave blanking interval is initiated following the average R-T interval subsequent to detection of an R-wave and lasts for a period of time equal to the average T-wave duration. In this manner, highly localized T-wave blanking is achieved permitting P-waves or other atrial signals to be detected during remaining non-blanked portions of the atrial channel of the cardiac signal at least for the purposes of atrial rate detection. The relatively short T-wave blanking interval of the invention is particularly well suited for use in combipolar sensing systems. Method and apparatus implementations are described.
摘要:
An improved implantable cardiac stimulating device that performs cardiac wall motion-based automatic capture verification system is provided. Pacing pulses of varying energy content are administered to a patient's heart, and the response of the patient's heart is sensed by a cardiac wall motion sensor. The cardiac wall motion sensor provides a signal which is analyzed to determine the patient's capture threshold, defined as the minimum amount of electrical stimulation required to evoke a cardiac contraction. The device then sets the amount of electrical stimulation at a level safely above the measured capture threshold. Capture verification may be performed at predetermined time intervals, on demand, or upon the occurrence of a significant cardiac event. Capture verification can also be performed on every pacing pulse delivered by the implantable cardiac stimulating device.
摘要:
An implantable microstimulator configured to be implanted beneath a patient's skin for tissue stimulation employs a bi-directional RF telemetry link for allowing data-containing signals to be sent to and from the implantable microstimulator from at least two external devices. Further, a separate electromagnetic inductive telemetry link allows data containing signals to be sent to the implantable microstimulator from at least one of the two external devices. The RF bidirectional telemetry link allows the microstimulator to inform the patient or clinician regarding the status of the microstimulator device, including the charge level of a power source, and stimulation parameter states. The microstimulator has a cylindrical hermetically sealed case having a length no greater than about 27 mm and a diameter no greater than about 3.3 mm. A reference electrode is located on one end of the case and an active electrode is located on the other end of the case.
摘要:
Systems for treating a movement disorder include a system control unit configured to be implanted at least partially within a patient and to generate at least one stimulus in accordance with one or more stimulation parameters adjusted to treat the movement disorder. The systems further include a programmable memory unit in communication with the system control unit and programmed to store the one or more stimulation parameters to at least partially define the stimulus such that the stimulus is configured to treat the movement disorder. A means for applying the stimulus to one or more stimulation sites within the patient is operably connected to the system control unit.
摘要:
An implantable cardiac stimulation device and method provides reliable sensing of cardiac events to support cardiac pacing or fibrillation detection. The device comprises a sensing circuit that senses the cardiac events in accordance with a plurality of threshold characterizing parameters. A parameter control adjusts the threshold parameters responsive to the rate of the sensed cardiac events in a manner which precludes positive feedback to prevent continued oversensing, undersensing, or noise sensing.
摘要:
Techniques are provided for detecting natural electrical coherence within the heart and for administering or adjusting therapy based upon whether natural electrical coherence is detected. In one example, an implantable cardioverter defibrillator (ICD), upon detecting atrial fibrillation, delays administering an atrial defibrillation pulse until a period of natural electrical coherence is detected between the left and the right atria of the heart. The ICD may further delay the pulse until the ventricles of the heart are refractory so as to help prevent triggering ventricular fibrillation. The pulses are administered at a time selected based upon the period of electrical coherence to reduce the amount of electrical energy required within the pulse to reliably defibrillate the heart. Other types of therapy besides defibrillation therapy such as anti-tachycardia pacing pulses may also be timed based upon detection periods of natural electrical coherence. Method and apparatus embodiments are described.
摘要:
A system and method for determining the onset and termination of cardiac events, such as the R-wave, the T-wave and the far-field signals sensed in the atria associated with the R-wave (FFR) and T-wave (FFT). The onset is defined as the time of the first sampled point of the cardiac signal whose magnitude exceeds a pre-defined threshold for the particular event. Once the onset of an event is positively determined, the cardiac signal is sampled at given intervals. The change in magnitude of these sampled points is determined. The termination of the event is identified through an algorithm that compares the difference in magnitude of these sampled points.
摘要:
A processing system and method are provided for deriving an improved hemodynamic indicator from cardiac wall acceleration signals. The cardiac wall acceleration signals are provided by a cardiac wall motion sensor that responds to cardiac mechanical activity. The cardiac wall acceleration signals are integrated over time to derive cardiac wall velocity signals, which are further integrated over time to derive cardiac wall displacement signals. The cardiac wall displacement signals correlate to known hemodynamic indicators, and are shown to be strongly suggestive of hemodynamic performance. An implantable cardiac stimulating device which uses cardiac wall displacement signals to detect and discriminate cardiac arrhythmias is also provided.