Abstract:
A digital television (DTV) transmitting system is provided that includes an encoder, a group formatter, a packet formatter and a transmission unit. The group formatter forms data groups where the plurality of second known data sequences are spaced 16 segments apart within at least one of the data groups that includes a transmission parameter inserted between the first known data sequence and the plurality of second known data sequences and the first known data sequence has a first M-symbol sequence and a second M-symbol sequence, the first M-symbol sequence and the second M-symbol sequence have a first pattern, each of the plurality of second known data sequences has a second pattern other than the first pattern, and the second pattern is positioned from a last symbol to a previous N symbol in each of the plurality of second known data sequences.
Abstract:
A method for receiving a broadcasting signal and a broadcasting signal receiver are disclosed. Even when a cell is changed while an emergency alert is output, the emergency alert can be continuously output using emergency alert table information included in the broadcasting signal and channel information of the cell. The emergency alert table information may include a cell identifier and the channel information of the cell may include virtual channel information of the cell.
Abstract:
A method of transmitting a broadcast signal includes encoding mobile data for FEC (Forward Error Correction); encoding signaling information for signaling the mobile data; allocating the encoded mobile data and signaling data into a transmission frame; and transmitting the broadcast signal including the transmission frame, wherein the transmission frame includes a service signaling table having service_type information identifying a type of a service of the mobile data and hidden information indicating whether the service of the mobile data is hidden or not.
Abstract:
A digital broadcasting system which is robust against an error when mobile service data is transmitted and a method of processing data are disclosed. The mobile service data is subjected to an additional coding process and the coded mobile service data is transmitted. Accordingly, it is possible to cope with a serious channel variation while applying robustness to the mobile service data.
Abstract:
An apparatus and method for transmitting digital broadcast signal are provided. The apparatus includes a group formatter to format a data group including mobile service data, where the group formatter further maps the mobile service data into a data group of interleaved format, adds N training sequences into a corresponding location of the data group of interleaved format, adds signaling data into the data group of interleaved format, inserts place holder bytes for MPEG header and non-systematic Reed-Solomon (RS) parity into the data group of interleaved format, and deinterleaves the mobile service data in the data group of interleaved format, a non-systematic RS encoder to non-systematic RS encode the mobile service data in the formatted data group and insert non-systematic RS parity obtained from the non-systematic RS encoding into the formatted data group.
Abstract:
A digital broadcast transmitter includes: a first encoder configured to Forward Error Correction (FEC) encode broadcast service data to add parity data, thereby generating an FEC frame, and divide the FEC frame into a plurality of groups, each of the plurality of groups having a same size; a second encoder configured to encode transmission parameter data; an interleaver configured to interleave data of the plurality of groups; and a transmitting unit configured to transmit the interleaved data and the encoded transmission parameter data, wherein the transmission parameter data include information for identifying a number of the parity data.
Abstract:
The present invention relates to a digital broadcasting system for transmitting/receiving a digital broadcasting signal and a method of processing data. In one aspect of the present invention provides a method of processing data, the method including receiving a broadcasting signal in which mobile service data and main service data are multiplexed, demodulating the received broadcasting signal, obtaining an identifier indicating that data frame of the broadcasting signal includes service guide information, decoding and storing the service guide information from the data frame; and outputting a service included in the mobile service data according to the decoded service guide information.
Abstract:
A DTV transmitting system includes a pre-processor, a block processor, and a trellis encoder. The pre-processor pre-processes enhanced data by expanding the enhanced data at an expansion rate of 1/H. The block processor includes a first converter, a symbol encoder, a symbol interleaver, and a second converter. The first converter converts the expanded data into symbols. The symbol encoder encodes each valid enhanced data bit in the symbol at an effective coding rate of 1/H. The symbol interleaver interleaves the encoded symbols, and the second converter converts the interleaved symbols into enhanced data bytes. The trellis encoder trellis-encodes the enhanced data outputted from the block processor.
Abstract:
A digital television transmitting system includes a frame encoder, a block processor, a group formatter, and a multiplexer. The frame encoder forms an enhanced data frame and encodes the data frame for error correction and for error detection. The block processor further encodes the encoded data frame at a rate of 1/2 or 1/4, and the group formatter divides the encoded data frame into a plurality of enhanced data blocks and maps the divided data blocks into a plurality of enhanced data groups, respectively. The multiplexer multiplexes the enhanced data groups with main data.
Abstract:
A digital television (DTV) transmitting system includes a first frame decoder, a second frame decoder, and a frame multiplexer. The first frame decoder forms first enhanced data frames, encodes each data frame for error correction, forms a first super frame by combining the encoded first frames, and interleaves the first super frame. The second frame decoder forms second enhanced data frames, encodes each data frame for error correction, forms a second super frame by combining the encoded second frames, and interleaves the second super frame. The frame multiplexer multiplexes the interleaved first and second enhanced data frames.