Abstract:
Embodiments described herein may be useful in the detection of analytes. The systems and methods may allow for a relatively simple and rapid way for detecting analytes such as chemical and/or biological analytes and may be useful in numerous applications including sensing, food manufacturing, medical diagnostics, performance materials, dynamic lenses, water monitoring, environmental monitoring, detection of proteins, detection of DNA, among other applications. For example, the systems and methods described herein may be used for determining the presence of a contaminant such as bacteria (e.g., detecting pathogenic bacteria in food and water samples which helps to prevent widespread infection, illness, and even death). Advantageously, the systems and methods described herein may not have the drawbacks in current detection technologies including, for example, relatively high costs, long enrichment steps and analysis times, and/or the need for extensive user training. Another advantageous feature provided by the systems and methods described herein includes fabrication in a relatively large scale. In some embodiments, the systems and methods may be used in conjunction with a detector including handheld detectors incorporated with, for example, smartphones (e.g., for the on-site detection of analytes such as pathogenic bacteria).
Abstract:
The present invention generally relates to colloids and methods for changing the arrangement of droplet phases. In some embodiments, the colloids and methods comprise a plurality of droplets comprising two or more components, such that the two or more components can change arrangement of the components in the presence of an external stimulus. In some embodiments, the change in component arrangement is reversible. In certain embodiments, the change in component arrangement forms Janus droplets.
Abstract:
Methods described herein may be useful in the fabrication and/or screening of devices (e.g., sensors, circuits, etc.) including conductive materials. In some embodiments, a conductive material is formed on a substrate using mechanical abrasion. The methods described herein may be useful in fabricating sensors, circuits, tags for remotely-monitored sensors or human/object labeling and tracking, among other devices. In some cases, devices for determining analytes are also provided.
Abstract:
Embodiments described herein relate to compositions, devices, and methods for the alignment of certain materials including liquid crystals. In some cases, a photoresponsive material include a moiety capable of undergoing a di-pi-methane rearrangement. Methods described herein may provide chemically and/or thermally stable alignment materials for use in a various technologies, including transistors, luminescent devices, and liquid crystal devices.
Abstract:
Embodiments described herein provide devices and methods for the determination of analytes. The device typically includes an absorbent material that allows for an analyte sample to be concentrated and analyzed simultaneously and within a short period of time (e.g., less than 10 seconds). Embodiments described herein can provide portable and easily operable devices for on-site, real time field monitoring with high sensitivity, selectivity, and fast response time.
Abstract:
Methods for depositing materials on patterned substrates, and related devices, are generally provided. In some embodiments, a material is deposited on a patterned substrate. In certain embodiments, the substrate comprises a first portion with a material deposited on the first portion and a second portion of the substrate essentially free of the material. The methods described herein may be useful in fabricating sensors, circuits, tags, among other devices. In some cases, devices for determining analytes are also provided.
Abstract:
Embodiments described herein provide materials and methods for the absorption or filtration of various species and analytes. In some cases, the materials may be used to remove or reduce the amount of a substance in vapor sample (e.g., cigarette smoke).
Abstract:
The present invention provides materials, devices, and methods related to determination of an analyte. In some embodiments, an analyte may be determined by monitoring, for example, a change in an optical signal of a luminescent material (e.g., particle) upon exposure to an analyte. The present invention may be particularly advantageous in that some embodiments may comprise an emissive species useful as an internal reference standard. Methods of the invention may also be useful in the quantitative determination of an analyte. In some cases, the present invention may allow for selective determination of an analyte.