摘要:
One embodiment of the present invention is to prevent deterioration of display quality from occurring in a display device provided with an active matrix substrate even when a larger size or a higher resolution is employed and a drive frequency is increased. In an active matrix substrate of a liquid crystal display device, a discharge control signal line is disposed so as to be arranged along each gate line and discharge TFTs are provided for each source line in numbers equal to the number of the gate lines. The gate terminal, source terminal, and drain terminal of the discharge TFT are connected to the discharge control signal line, the storage capacitance line, and its adjacent source line, respectively. Each storage capacitance line is provided with the common potential Vcom. Each discharge control signal line is provided with a signal which turns on the discharge TFT for a predetermined period of every one horizontal period.
摘要:
A liquid crystal display of the present invention contains a first panel and a second panel being stacked. Adjacent pairs of polarizers (A to C) disposed on the panels form crossed Nicols. When the first panel produces a display according to a first display signal, the second panel produces a display according to a second display signal obtained from the first display signal. Each of the two joined panels is provided with a light diffusion layer having a light diffusing property. The provision of the light diffusion layers enables reducing moire pattern occurrences which would otherwise markedly increase when two liquid crystal panels are stacked. As a result, the liquid crystal display has high display quality.
摘要:
An active matrix substrate including, in each pixel area, a transistor, a pixel electrode (17), a conductive member (18) functioning as one of electrodes of a storage capacitor, a drain lead-out (7) electrode connected to a drain electrode of the transistor, and overlapping with the conductive member (18), and a contact hole for connecting the drain lead-out electrode (7) to the pixel electrode (17), includes a gate insulating film (40) covering a gate electrode of each transistor, the gate insulating film including a first thickness portion (41) overlapping with at least part of the contact hole, and a second thickness portion (42) formed adjacent to the first thickness portion, and overlapping with the drain lead-out electrode, the first thickness portion (41) having a greater thickness than the second thickness portion (42). This makes it possible to provide the active matrix substrate in which a short-circuit between the conductive member functioning as one of the electrodes of the storage capacitor, and the drain lead-out electrode (or the pixel electrode) is successfully prevented.
摘要:
A substrate for a display device includes a scan line, a signal line, a switching element provided on an insulating substrate, an interlayer insulation film, and a pixel electrode. The switching element is provided at an intersection of the scan line and the signal line. The switching element includes a gate electrode connected to the scan line, a source electrode connected to the signal line, and a drain electrode connected to the pixel electrode. The interlayer insulation film includes a contact hole for connecting the drain electrode of the switching element to the pixel electrode. A protective layer formed of an insulating material is provided without contact holes above the scan line and/or the signal line. A portion of an underlying film under the protective layer contacts a portion of an overlying film over the protective layer.
摘要:
In an active matrix substrate of the present invention, a gate insulating film for covering a gate electrode of each transistor has a thin portion, having a reduced film thickness, which is provided on a part overlapped on the gate electrode, and the thin portion is formed by using the gate electrode, on which the thin portion is overlapped, as a mask, and each transistor has a first drain electrode section and a second drain electrode section which are respectively provided on both sides of a source electrode, and the thin portion has two edges opposite to each other, and the first drain electrode section is overlapped on the one edge, and the second drain electrode section is overlapped on the other edge. This makes it possible to provide an active matrix substrate which realizes high display quality while suppressing unevenness of parasitic capacitances (particularly, Cgd) of TFTs in the active matrix substrate whose each TFT has a thin portion in its gate insulating film.
摘要:
The method of driving a liquid crystal display in accordance with one embodiment of the present invention is a method of driving a liquid crystal display whereby a first liquid crystal panels produces a display from a first display signal and the second liquid crystal panel produces a display a second display signal derived from the first display signal, the first and second liquid crystal panels being stacked on top of each other. The luminance of the first liquid crystal panel is extended based on the luminance extension ratio obtained from the gray levels for dots contained in the first display signal and a logical maximum gray level of input image data. The luminance of the second liquid crystal panel which produces a display from the second display signal is lowered by the amount by which luminance is extended on the first liquid crystal panel. A liquid crystal display with high display quality is realized by restraining decrease in saturation which would otherwise become obtrusive when two liquid crystal panels are stacked.
摘要:
In one embodiment of a display device, pixels are arranged in matrix, and a first luminance area (high luminance area) and a second luminance area (low luminance area) which surrounds the first luminance area and has a luminance lower than that of the first luminance area can be formed in each pixel. The display device which can clearly display an image having a high spatial frequency and an active matrix substrate to be used for the display device are provided.
摘要:
An active matrix substrate includes a substrate, a TFT formed on the substrate, a storage capacitor element formed on the substrate, an interlayer insulating film covering the storage capacitor element, and a pixel electrode formed on the interlayer insulating film. The storage capacitor element includes a storage capacitor line, an insulating film formed on the storage capacitor line, and two or more storage capacitor electrodes opposed to the storage capacitor line with the insulating film interposed therebetween. The two or more storage capacitor electrodes are electrically connected via associated contact holes formed in the interlayer insulating film to the pixel electrode and electrically continuous with a drain electrode of the TFT.
摘要:
It is an object of the present invention to provide a substrate for liquid crystal display by means of which a generation of air bubbles in a liquid crystal layer after charging a liquid crystal can be prevented, and a liquid crystal display having a good display quality level can be obtained at a high yield, and to provide a liquid crystal display unit provided with such substrate for liquid crystal display. The present invention is directed to a substrate for liquid crystal display, comprising a projection for controlling alignments of liquid crystal molecules, wherein a slit is provided in the projection for controlling alignments of liquid crystal molecules.
摘要:
An Ta film for use in forming a source electrode and a drain electrode and an amorphous silicon film for use in forming an amorphous silicon semiconductor layer with impurity are continuously etched without setting an etching selectivity ratio. As a result, the source electrode, the drain electrode and the amorphous silicon semiconductor can be formed by a single etching process, and in the meantime, surface protrusions and recessions can be formed in a back channel region on the order of several hundreds of Å reflecting the crystal grain diameters of the Ta film for use in forming the source electrode and the drain electrode. The resulting protrusions and recessions offers an effect of suppressing an increase in OFF-state current value of the thin film transistor, and according to the foregoing method, the thin film transistor can be manufactured through a reduced number of steps at lower cost.