摘要:
Various embodiments of the invention described herein reduce contact resistance to a silicon-containing material using a first refractory metal material overlying the silicon-containing material and a second refractory metal material overlying the first refractory metal material. Each refractory metal material is a conductive material containing a refractory metal and an impurity. The first refractory metal material is a metal-rich material, containing a level of its impurity at less than a stoichiometric level. The second refractory metal material has a lower affinity for the impurities than does the first refractory metal material. The second refractory metal material can thus serve as an impurity donor during an anneal or other exposure to heat. This net migration of the impurities to the first refractory metal material limits growth of a metal silicide interface between the first refractory metal material and the underlying silicon-containing material, thereby providing ohmic contact with attendant thermal tolerance.
摘要:
A method of forming a local interconnect structure is provided. A first barrier layer comprising sputtered titanium nitride is formed over a topographical structure situated upon a field oxide region within a semiconductor substrate. A hard mask layer comprising tungsten silicide is formed over the first barrier layer. A photoresist layer is then formed over the hard mask layer. The hard mask layer is selectively removed from above an adjacent gate stack on the semiconductor substrate using an etch that is selective to the first barrier layer. The first barrier layer is selectively removed using an etch that is selective to the hard mask layer. A silica layer is formed over the hard mask layer. A recess is formed in the silica layer that is aligned with an active area within the semiconductor substrate. The recess is filled with an electrically conductive material. A second method of forming a local interconnect structure is provided comprising forming a first barrier layer comprising sputter titanium nitride over a semiconductor substrate having a topographical structure situated upon a field oxide region within the semiconductor substrate. A first electrically conductive layer comprising tungsten is then formed over the first barrier layer using chemical vapor deposition. The first electrically conductive layer provides good step coverage over the topographical structure. A second barrier layer comprising sputtered titanium nitride is formed over the first electrically conductive layer. A hard mask layer comprising polysilicon or silica is then formed over the second barrier layer. The hard mask is selectively removed from above an adjacent gate stack on the semiconductor substrate with an etch that is selective to the second barrier layer. The second barrier layer, the first conductive layer, and the first barrier layer are selectively removed, thereby exposing the underlying gate stack on the semiconductor substrate using a chemical etch selective to the hard mask layer. A silica layer is then formed with a recess therein that is filled with an electrically conductive material to form an active area contact through the local interconnect structure.
摘要:
In one aspect, the invention includes a semiconductor device comprising: a) an electrically insulative layer over a substrate; b) an opening within the electrically insulative layer, the opening having a periphery defined at least in part by a bottom surface and a sidewall surface; c) a first layer comprising TiN within the opening, the first layer being over the bottom surface and along the sidewall surface; d) a second layer comprising elemental Ti over the electrically insulative layer but substantially not within the opening, the second layer having a thickness of less than 75Å along the sidewall surface and over the bottom surface; and e) an aluminum-comprising layer within the opening and over the second layer. In another aspect, the invention includes a semiconductor device comprising: a) a first aluminum-comprising layer over an electrically insulative layer; b) a first titanium-comprising layer over the first aluminum-comprising layer; c) a second titanium-comprising layer over the first titanium-comprising layer, one of the first and second titanium-comprising layers comprising elemental Ti and the other of the first and second titanium-comprising layers comprising TiN; and d) a second aluminum-comprising layer over the second titanium-comprising layer.
摘要:
A method of fabricating an integrated circuit having reduced threshold voltage shift is provided. A nonconducting region is formed on the semiconductor substrate and active regions are formed on the semiconductor substrate. The active regions are separated by the nonconducting region. A barrier layer and a dielectric layer are deposited over the nonconducting region and over the active regions. Heat is applied to the integrated circuit causing the barrier layer to anneal.
摘要:
A method of forming an oxidation diffusion barrier stack for use in fabrication of integrated circuits includes forming an inorganic antireflective material layer on a semiconductor substrate assembly with an oxidation diffusion barrier layer then formed on the inorganic antireflective material layer. Another method of forming such a stack includes forming a pad oxide layer on the semiconductor substrate assembly with an inorganic antireflective material layer then formed on the pad oxide layer and an oxidation diffusion barrier layer formed on the antireflective material layer. Another method of forming the stack includes forming a pad oxide layer on the semiconductor substrate assembly. A first oxidation diffusion barrier layer is then formed on the pad oxide layer, an inorganic antireflective material layer is formed on the first oxidation diffusion barrier layer, and a second oxidation diffusion barrier layer is formed on the inorganic antireflective material layer. The antireflective material layer may include a layer of material selected from the group of silicon nitride, silicon oxide, and silicon oxynitride and further may be a silicon-rich layer. The oxidation diffusion barrier stacks may be used for oxidation of field regions for isolation in an integration circuit. Further, the various oxidation diffusion barrier stacks are also described.
摘要:
A method for depositing highly conformal silicate glass layers via chemical vapor deposition through the reaction of TEOS and O3 is disclosed. The entire method, which can be performed in a single cluster tool and even in a single chamber, begins by placing an in-process semiconductor wafer having multiple surface constituents in a plasma-enhanced chemical vapor deposition chamber. A “clean” silicate glass base layer that is substantially free of carbon particle impurities on an upper surface is then formed on the wafer surface in one of two ways. The first employs plasma-enhanced chemical vapor deposition using TEOS and diatomic oxygen gases as precursors to first deposit a “dirty” silicate glass base layer having carbon particle impurities imbedded on an upper surface thereof. The dirty base layer is then transformed to a clean base layer by subjecting it to a plasma treatment, which involves flowing a mixture of a diamagnetic oxygen-containing oxidant, such as ozone or hydrogen peroxide, and diatomic oxygen gas into the chamber and striking an RF plasma at a power density setting of about 0.25 to 3.0 watts/cm2 for a period of from 30-300 seconds. It is hypothesized that the plasma treatment burns off the impurities, which are present in the PECVD-deposited base layer and which may be responsible for certain hydrophilic surface effects which repel TEOS molecules. The plasma treatment also creates a high degree of surface uniformity on the PECVD-deposited glass layer. The second way of forming a clean silicate glass base layer involves flowing hydrogen peroxide vapor and at least one gaseous compound selected from the group consisting of silane and disilane into the deposition chamber. Following the formation of the clean base layer, a subsequent glass layer is deposited over the PECVD-deposited glass layer in the same chamber or cluster tool using chemical vapor deposition and TEOS and ozone as precursor compounds.
摘要:
A method for depositing an aluminum film limits the growth of voids and notches in the aluminum film and forms and aluminum film with a reduced amount of voids and notches. The first step of the method is to form an underlying layer upon which is deposited an aluminum film having a first thickness. The surface of the aluminum film is then exposed to a passivation species which coats the aluminum grains and precipitates at the grain boundaries so as to prevent grain movement. The exposure of the aluminum film to the passivation species reduces void formation and coalescence of the voids. An aluminum layer having a second thickness is then deposited over the initially deposited aluminum layer. In a second embodiment of the invention, the passivation species is deposited with MOCVD and to form an electromigration-resistant alloy. A third embodiment involves multiple depositions of aluminum, with exposure to a passivation species conducted after each deposition. Each deposition is also conducted at a successively lower temperature than the prior deposition.
摘要:
A method for depositing highly conformal silicate glass layers via chemical vapor deposition through the reaction of TEOS and O3 is disclosed. The entire method, which can be performed in a single cluster tool and even in a single chamber, begins by placing an in-process semiconductor wafer having multiple surface constituents in a plasma-enhanced chemical vapor deposition chamber. A “clean” silicate glass base layer that is substantially free of carbon particle impurities on an upper surface is then formed on the wafer surface in one of two ways. The first employs plasma-enhanced chemical vapor deposition using TEOS and diatomic oxygen gases as precursors to first deposit a “dirty” silicate glass base layer having carbon particle impurities imbedded on an upper surface thereof. The dirty base layer is then transformed to a clean base layer by subjecting it to a plasma treatment, which involves flowing a mixture of a diamagnetic oxygen-containing oxidant, such as ozone or hydrogen peroxide, and diatomic oxygen gas into the chamber and striking an RF plasma at a power density setting of about 0.25 to 3.0 watts/cm2 for a period from 30-300 seconds. It is hypothesized that the plasma treatment burns off the impurities, which are present in the PECVD-deposited base layer and which may be responsible for certain hydrophilic surface effects which repel TEOS molecules. The plasma treatment also creates a high degree of surface uniformity on the PECVD-deposited glass layer. The second way of forming a clean silicate glass base layer involves flowing hydrogen peroxide vapor and at least one gaseous compound selected from the group consisting of silane and disilane into the deposition chamber. Following the formation of the clean base layer, a subsequent glass layer is deposited over the PECVD-deposited glass layer in the same chamber or cluster tool using chemical vapor deposition and TEOS and ozone as precursor compounds.
摘要:
An interlevel dielectric structure includes first and second dielectric layers between which are located lines of a conductive material with a dielectric material in spaces between the lines of conductive material, with the lower surface of the dielectric material extending lower than the lower surface of lines of conductive material adjacent thereto, and the upper surface of the dielectric material extending higher than the upper surface of conductive material adjacent thereto, thus reducing fringe and total capacitance between the lines of conductive material. The dielectric material, which has a dielectric constant of less than about 3.6, does not extend directly above the upper surface of the lines of conductive material, allowing formation of subsequent contacts down to the lines of conductive material without exposing the dielectric material to further processing. Various methods for forming the interlevel dielectric structure are disclosed.
摘要:
A method for depositing highly conformal silicate glass layers via chemical vapor deposition through the reaction of TEOS and O.sub.3 is disclosed. The entire method, which can be performed in a single cluster tool and even in a single chamber, begins by placing an in-process semiconductor wafer having multiple surface constituents in a plasma-enhanced chemical vapor deposition chamber. A "clean" silicate glass base layer that is substantially free of carbon particle impurities on an upper surface is then formed on the wafer surface in one of two ways. The first employs plasma-enhanced chemical vapor deposition using TEOS and diatomic oxygen gases as precursors to first deposit a "dirty" silicate glass base layer having carbon particle impurities imbedded on an upper surface. The dirty base layer is then transformed to a clean base layer by subjecting it to a plasma treatment, which involves flowing a mixture of a diamagnetic oxygen-containing oxidant, such as ozone or hydrogen peroxide, and diatomic oxygen gas into the chamber and striking an RF plasma at a power density setting of about 0.25 to 3.0 watts/cm.sup.2 for a period of from 30-300 seconds. It is hypothesized that the plasma treatment burns off the impurities, which are present in the PECVD-deposited base layer and which may be responsible for certain hydrophilic surface effects which repel TEOS molecules. The plasma treatment also creates a high degree of surface uniformity on the PECVD-deposited glass layer. The second way of forming a clean silicate glass base layer involves flowing hydrogen peroxide vapor and at least one gaseous compound selected from the group consisting of silane and disilane into the deposition chamber. Following the formation of the clean base layer, a subsequent glass layer is deposited over the PECVD-deposited glass layer in the same chamber or cluster tool using chemical vapor deposition and TEOS and ozone as precursor compounds.