摘要:
Systems and related methods guide a movable electrode within an array of multiple-electrodes located within the body. The systems and methods employ the movable electrode or at least one of the multiple-electrodes on the array to generate and then sense electrical or sonic energy in a predetermined fashion to generates an output that locates the movable electrode within the array.
摘要:
The present invention provides ultrasound-guided ablation catheters and methods for their use. In one embodiment, a tissue ablation apparatus (2) includes a flexible elongate body (12) having proximal (14) and distal (12) ends. A plurality of spaced-apart electrodes (24) are operably attached to the flexible body near the distal end. A plurality of transducer elements (28) are disposed between at least some of the electrodes. Transducers assist the physician in determining whether or not the ablation elements are in contact with the tissue to be ablated.
摘要:
Systems and methods for controlling the power supplied to an electrosurgical probe. The systems and methods may be used to monitor electrode-tissue contact, adjust power in response to a loss of contact, and apply power in such a manner that charring, coagulum formation and tissue popping are less likely to occur.
摘要:
An interface, used in association with an electrode structure deployed in contact with heart tissue, generates a display comprising an image of the electrode structure at least partially while performing a therapeutic or diagnostic procedure. The interface annotates the image in response to procedure events.
摘要:
Systems and methods analyze biopotential morphologies in body tissue. The systems and methods use a template of a biopotential event of known cause in body tissue. The systems and methods compare this template to a sample of a biopotential event externally triggered in body tissue. The systems and methods generate an output based upon the comparison. The systems and methods can be used to compare an event-specific template of a cardiac event of known diagnosis to a sample of a paced cardiac event. The comparison yields a matching coefficient indicating how alike the input sample is to the input template. The matching coefficient can be used by the physician, for example, to aid in the location of sites that are potentially appropriate for ablation.
摘要:
An imaging element characterizes tissue morphology by analyzing perfusion patterns of a contrast media in tissue visualized by the imaging element, to identify infarcted tissue. In a preferred implementation, a catheter tube introduced into a heart region carries the imaging element, as well as a support structure spaced from the imaging element, which contacts endocardial tissue. The imaging element is moved as the imaging element visualizes tissue. A selected electrical event is sensed in surrounding myocardial tissue, which regulates movement of the imaging element. The support element stabilizes the moving imaging element as it visualizes tissue, providing resistance to dislodgment or disorientation despite the presence of dynamic forces.
摘要:
Systems and methods acquire electrocardiograms using a first electrode associated with a region of heart tissue and a second body surface electrode. An analog or digital processing element is coupled to the first and second electrodes for conditioning the first electrode to emit a pacing signal and for conditioning the second electrode to sense paced electrocardiograms occurring as a result of the pacing signal. The systems and methods also employ a template of an electrocardiogram of a cardiac event of known diagnosis; for example an arrhythmia that the physician seeks to treat. The systems and methods compare this event-specific template to a sample of a paced electrocardiogram. The comparison yields a matching coefficient indicating how alike the input sample is to the input template. The matching coefficient can be used by the physician, for example, to aid in the location of sites that are potentially appropriate for ablation.
摘要:
Systems and methods for heating body tissue place a multi-function structure having an exterior wall in contact with body tissue. The structure includes an array of electrically conducting electrode segments carried by the exterior wall. An electrically conductive network is coupled to the electrode segments, including at least one electrically conductive path individually coupled to each electrode segment. The systems and methods operate in a first mode during which the network is electrically conditioned to individually sense at each electrode segment local electrical events in tissue, such as electrical potentials, resistivity, or impedance. The systems and methods operate in a second mode during which the network is electrically conditioned, based at least in part upon local electrical events sensed by the electrode segments, to couple at least two electrode segments together to simultaneously transmit electrical energy to heat or ablate a region of body tissue.
摘要:
An imaging system for visualizing an interior body region comprises a catheter tube having a proximal end and a distal end adapted for introduction into the interior body region. The distal end carries an element that forms a three-dimensional support structure for contacting peripheral tissue in the interior body region. The three-dimensional support structure has an open interior. The distal end also carries an imaging element for visualizing the interior body region. The three-dimensional support structure peripherally surrounds the imaging element, thereby keeping peripheral tissue from contacting the imaging element. A steering mechanism on the proximal end of the catheter tube moves the imaging element within the open interior of the three-dimensional support structure. The system provides a stable platform through which accurate displays of interior body images can be created for viewing and analysis by the physician, so the appropriate treatment or therapy can be prescribed.
摘要:
A catheter tube carries an operative element, such as, for example, an imaging element to visualize tissue. The catheter tube also carries a support structure, which surrounds the operative element. A steering element moves the operative element relative to the support structure. A guidance element generates an electric field within the support structure, while sensing spatial variations in the electric field during movement of the imaging element. The guidance element generates an output that locates the imaging element relative to the support structure based upon an analysis of the sensed spatial variations. The support structure preferably carries an identification code, which represents the specific spatial geometry of the support structure. The support structure outputs the identification code to the guidance element for consideration when generating the location-specific output.