摘要:
A method of and an apparatus for encoding and decoding using transformation bases of a yet higher efficiency. In a method for encoding an object signal in compliance with a transformation rule, a signal correlating to the object signal is obtained, and a transformation base that forms the transformation rule is derived based on a characteristic of the obtained reference signal. The object signal is transformed and encoded in compliance with the transformation rule based on the derived transformation base. Accordingly, the object signal is transformed in compliance with the transformation rule based on the transformation base derived from the characteristic of the reference signal. Since the reference signal is correlated to the object signal, the transformation base derived from the characteristic matches the feature of the object signal.
摘要:
A context of media content is represented by context description data having a hierarchical stratum. The context description data has the highest hierarchical layer, the lowest hierarchical layer, and other hierarchical layers. The highest hierarchical layer is formed from a single element representing content. The lowest hierarchical layer is formed from an element representing a segment of media content which corresponds to a change between scenes of video data or a change in audible tones. The remaining hierarchical layers are formed from an element representing a scene or a collection of scenes. A score corresponding to the context of a scene of interest is appended, as an attribute, to the element in each of the remaining hierarchical layers. A score relating to the time information about a corresponding media segment and a context is appended, as an attribute, to individual elements in the lowest hierarchical layer. In a selection step of a data processing method, the context of the media content is expressed, and one or a plurality of scenes of the media content is or are selected on the basis of the score of the context description data. Further, in the extraction step of the data processing method, only data pertaining to the scenes selected in the selection step are extracted.
摘要:
A decoder decodes encoded binary image data on each block in order to recover a target block of the binary image. The image decoder includes motion compensated blocking which obtains a reference block from a reference binary image by applying motion compensation using motion information. A selector selects a statistical model from among a plurality of statistical models, based on states of pixels surrounding a reference pixel in the reference block, in which the reference pixel also corresponds to a target pixel in the target block. An arithmetic decoder recovers the target block by decoding the encoded data using the selected statistical model. In one embodiment, the pixels surrounding the reference pixel in the reference block are pixels positioned within one pixel distance from the reference pixel.
摘要:
The transformation method for moving picture coding system reads data of a frame from the first data sequence in the first moving picture moving coding system, prereads a coding mode of a successive frame to record, and when the preread coding mode of the successive frame is the intra-frame coding mode, performs a control not to perform coding of a present frame or decrease a generated code amount corresponding to the generated coed content of the second data sequence in the second moving picture coding system. Then, the method preferentially transforms data coded by the intra-frame coding mode existing in the first data sequence to the second data sequence.
摘要:
A decoder decodes encoded binary image data on each block in order to recover a target block of the binary image. The image decoder includes motion compensated blocking which obtains a reference block from a reference binary image by applying motion compensation using motion information. A selector selects a statistical model from among a plurality of statistical models, based on states of pixels surrounding a reference pixel in the reference block, in which the reference pixel also corresponds to a target pixel in the target block. An arithmetic decoder recovers the target block by decoding the encoded data using the selected statistical model. In one embodiment, the pixels surrounding the reference pixel in the reference block are pixels positioned within one pixel distance from the reference pixel.
摘要:
A decoder decodes encoding binary image data on each block in order to recover a target block of the binary image. The image decoder includes motion compensated blocking which obtains a reference block from a reference binary image by applying motion compensation using motion information. A selector selects a statistical model from among a plurality of statistical models, based on states of pixels surrounding a reference pixel in the reference block, in which the reference pixel also corresponds to a target pixel in the target block. An arithmetic decoder recovers the target block by decoding the encoded data using the selected statistical model. In one embodiment, the pixels surrounding the reference pixel in the reference block are pixels positioned within one pixel distance from the reference pixel.
摘要:
By a motion vector correction circuit 313, a motion vector minimizing the sum of a value of the quadratic error function having a motion vector as a variable and the motion vector changing amount in neighboring blocks is determined, and it is linearly interpolated by a motion vector interpolation circuit 314 to obtain a motion vector in a pixel unit, and a motion compensated picture is generated, and a differential picture of the current frame and this motion compensated picture is divided into sub-bands by a video transform circuit 304, and only the information in the region of the larger differential signal energy is coded.
摘要:
By expanding the technique of detection of a motion vector by the of time-space differential method, (1) repetitive calculations are not needed, (2) different motion vectors near the boundary of an object can be detected, and (3) coupling of the region segmentation and the framework is enabled. For this, a horizontal direction differentiating filter (104), a vertical direction differentiating filter (105), and a time direction differentiating filter (106) calculate the time-space differential (.differential.I/.differential.x, .differential.I/.differential.y, .differential.I/.differential.t) in formula (2) necessary for motion vector estimation in every pixel. A feature vector combining part (110) generates a sample vector coupling the time-space differential value and position for a random image position (x, y), and clusters from pairs of samples and classes, to minimize the difference in a maximum likelihood class determining part (112) and a maximum likelihood class data changing part (113). The motion vector is obtained from the third eigen vector of covariance matrix of the time-space differential value.
摘要翻译:通过利用时空微分法扩展运动矢量检测技术,(1)不需要重复计算,(2)可以检测到物体边界附近的不同运动矢量,(3)耦合 区域分割和框架启用。 为此,水平方向微分滤波器(104),垂直方向微分滤波器(105)和时间方向微分滤波器(106)计算时空微分(DIFFERENTIAL I / DIFFERENTIAL x,DIFFERENTIAL I / DIFFERENTIAL Y,DIFFERENTIAL I / DIFFERENTIAL t)在每个像素中运动矢量估计所需的公式(2)中。 特征向量组合部分(110)产生一个样本向量,它将随机图像位置(x,y)的时空微分值和位置,以及样本和类别对的聚类,以最小化最大似然等级的差异 确定部分(112)和最大似然类数据改变部分(113)。 运动矢量是从时空微分值的协方差矩阵的第三个特征向量获得的。
摘要:
A video processing system 100 is provided with video encoding device 10 and video decoding device 20. The video encoding device 10 implements backward interframe prediction from a temporally subsequent frame and outputs information indicating that an option to eliminate use of a decoded image of the temporally subsequent frame was chosen. The video decoding device 20 eliminates use of the decoded image of the frame on the basis of this information, in conjunction with input of the information for eliminating use of the decoded image of the temporally subsequent frame.
摘要:
Image encoding apparatus 10 according to the present invention is an image encoding apparatus 10 for dividing image signals into blocks, performing an orthogonal transform of each block, reading resultant orthogonal transform coefficients to obtain a coefficient string, and performing entropy coding, which has block selector 14 for selecting a size of a block for the orthogonal transform, out of a plurality of blocks of different sizes; coefficient string divider 12 for, when a block of a size larger than a minimum size is selected by block selector 14, dividing a coefficient string in the block into a plurality of coefficient strings of a length equal to that of a coefficient string in a block of the minimum size; and encoder 13 for performing entropy coding adapted to the coefficient string in the block of the minimum size. This substantializes the image encoding apparatus capable of achieving efficient entropy coding in the orthogonal transform of variable sizes.