摘要:
A borderless contact structure and method of fabricating the structure, the method including: (a) providing a substrate; (b) forming a polysilicon line on the substrate, the polysilicon line having sidewalls; (c) forming an insulating sidewall layer on the sidewalls of the polysilicon line; (d) removing a portion of the polysilicon line and a corresponding portion of the insulating sidewall layer in a contact region of the polysilicon line; and (e) forming a silicide layer on the sidewall of the polysilicon line in the contact region. Also an SRAM cell using the borderless contact structure and a method of fabricating the SRAM cell.
摘要:
A field effect transistor employs a vertically oriented carbon nanotube as the transistor body, the nanotube being formed by deposition within a vertical aperture, with an optional combination of several nanotubes in parallel to produced quantized current drive and an optional change in the chemical composition of the carbon material at the top or at the bottom to suppress short channel effects.
摘要:
Structures for memory devices. The structure includes (a) a substrate; (b) a first and second electrode regions on the substrate; and (c) a third electrode region disposed between the first and second electrode regions. In response to a first write voltage potential applied between the first and third electrode regions, the third electrode region changes its own shape, such that in response to a pre-specified read voltage potential subsequently applied between the first and third electrode regions, a sensing current flows between the first and third electrode regions. In addition, in response to a second write voltage potential being applied between the second and third electrode regions, the third electrode region changes its own shape such that in response to the pre-specified read voltage potential applied between the first and third electrode regions, said sensing current does not flow between the first and third electrode regions.
摘要:
Semiconductor structures and methods for suppressing latch-up in bulk CMOS devices. The semiconductor structure comprises a shaped-modified isolation region that is formed in a trench generally between two doped wells of the substrate in which the bulk CMOS devices are fabricated. The shaped-modified isolation region may comprise a widened dielectric-filled portion of the trench, which may optionally include a nearby damage region, or a narrowed dielectric-filled portion of the trench that partitions a damage region between the two doped wells. Latch-up may also be suppressed by providing a lattice-mismatched layer between the trench base and the dielectric filler in the trench.
摘要:
A conductive layer in an integrated circuit is formed as a sandwich having multiple sublayers, including at least one sublayer of oriented carbon nanotubes. The conductive layer sandwich preferably contains two sublayers of carbon nanotubes, in which the carbon nanotube orientation in one sublayer is substantially perpendicular to that of the other layer. The conductive layer sandwich preferably contains one or more additional sublayers of a conductive material, such as a metal. In one embodiment, oriented carbon nanotubes are created by forming a series of parallel surface ridges, covering the top and one side of the ridges with a catalyst inhibitor, and growing carbon nanotubes horizontally from the uncovered vertical sides of the ridges. In another embodiment, oriented carbon nanotubes are grown on the surface of a conductive material in the presence of a directional flow of reactant gases and a catalyst.
摘要:
An immersion lithography system is provided which includes an optical source operable to produce light having a nominal wavelength and an optical imaging system. The optical imaging system has an optical element in an optical path from the optical source to an article to be patterned thereby. The optical element has a face which is adapted to contact a liquid occupying a space between the face and the article. The optical element includes a material which is degradable by the liquid and a protective coating which covers the degradable material at the face for protecting the face from the liquid, the protective coating being transparent to the light, stable when exposed to the light and stable when exposed to the liquid.
摘要:
A method of fabricating a structure and fabricating related semiconductor transistors and novel semiconductor transistor structures. The method of fabricating the structure includes: providing a substrate having a top surface; forming an island on the top surface of the substrate, a top surface of the island parallel to the top surface of the substrate, a sidewall of the island extending between the top surface of the island and the top surface of the substrate; forming a plurality of carbon nanotubes on the sidewall of the island; and performing an ion implantation, the ion implantation penetrating into the island and blocked from penetrating into the substrate in regions of the substrate masked by the island and the carbon nanotubes.
摘要:
Micro-valves and micro-pumps and methods of fabricating micro-valves and micro-pumps. The micro-valves and micro-pumps include electrically conductive diaphragms fabricated from electrically conductive nano-fibers. Fluid flow through the micro-valves and pumping action of the micro-pumps is accomplished by applying electrostatic forces to the electrically conductive diaphragms.
摘要:
Conductive sidewall spacer structures are formed using a method that patterns structures (mandrels) and activates the sidewalls of the structures. Metal ions are attached to the sidewalls of the structures and these metal ions are reduced to form seed material. The structures are then trimmed and the seed material is plated to form wiring on the sidewalls of the structures.
摘要:
In a first aspect, a first apparatus is provided. The first apparatus is semiconductor device that includes (1) a shallow trench isolation (STI) oxide region; (2) a first metal-oxide-semiconductor field-effect transistor (MOSFET) coupled to a first side of the STI oxide region; (3) a second MOSFET coupled to a second side of the STI oxide region, wherein portions of the first and second MOSFETs form first and second bipolar junction transistors (BJTs) which are coupled into a loop; and (4) a dopant-implanted region below the STI oxide region, wherein the dopant-implanted region forms a portion of the BJT loop and is adapted to reduce a gain of the loop. Numerous other aspects are provided.