Abstract:
The disclosure relates to an ammonia storage structure in particular for the selective catalytic reduction of nitrogen oxides in the exhaust gases of combustion vehicles, where the structure includes at least one element for storing a gas such as ammonia, in the form of a porous matrix, with which an irrigating device the storage element are associated. The disclosure also relates to an ammonia storage and removal system of a vehicle that includes a storage chamber receiving such a storage structure, a selective catalytic reduction system for internal combustion engine exhaust gases, including such an ammonia storage system and to a module for feeding ammonia into the exhaust gases, and, finally, to a monolithic porous matrix for storing a gas, where the matrix contains the irrigation device in the interior thereof, in order to promote the sorption/desorption of the gas in the matrix.
Abstract:
A sorbing granular material (20) is provided including a plurality of particles of granular material (5). The particles of granular material (5) are mixed at least partly with magnetizable particles (10), so that in case of magnetization of the magnetizable particles (10), the particles of granular material (5) form a compacted sorbing granular material (20) based on magnetic attracting forces between the magnetizable particles (10). The compaction is reversible. In addition, a process for producing a sorbing granular material (20) is provided.
Abstract:
A porous and permeable composite for treatment of contaminated fluids characterized in that said composite includes a body of iron particles and 0.01-10% by weight of at least one functional ingredient distributed and locked in the pores and cavities of the iron body. Also, methods of making a permeable porous composite for water treatment. Also, use of a permeable porous composite for reducing the content of contaminants in a fluid, wherein said fluid is allowed to pass through the permeable composite.
Abstract:
A method of dry coating oxidizable particles with activating particles. The method includes accreting at least portions of the activating particles onto surfaces of the oxidizable particles by mechanically induced juxtapositions to form composite particles; and abrading the composite particles to more evenly distribute the activating component over surfaces of the activating particles.
Abstract:
A growing medium includes a bulking agent and a water-retentive polymer blended together and compressed at a volume-to-volume ratio ranging from about 2:1 to about 10:1, being substantially free of a water-soluble binder material.
Abstract:
A flat bag, and method of producing one, filled with a small quantity of a matrix, such that the matrix is evenly spread over the entire bag to maintain a low profile through all foreseeable handling and transport conditions. The matrix contains a functional material that may be a desiccant, volatile organic chemical absorber, odor absorber, odor emitter, oxygen absorber, or a humectant.
Abstract:
A growing medium includes a bulking agent and a water-retentive polymer blended together and compressed at a volume-to-volume ratio ranging from about 2:1 to about 10:1, being substantially free of a water-soluble binder material.
Abstract:
Methods and compositions relate to manufacturing a carbonaceous article from particles that have pitch coatings. Heating the particles that are formed into a shape of the article carbonizes the pitch coatings. The particles interconnect with one another due to being formed into the shape of the article and are fixed together where the pitch coatings along adjoined ones of the particles contact one another and are carbonized to create the article.
Abstract:
A growing medium includes a bulking agent and a water-retentive polymer blended together and compressed at a volume-to-volume ratio ranging from about 2:1 to about 10:1, being substantially free of a water-soluble binder material.
Abstract:
A method of dry coating oxidizable particles with activating particles. The method includes accreting at least portions of the activating particles onto surfaces of the oxidizable particles by mechanically induced juxtapositions to form composite particles; and abrading the composite particles to more evenly distribute the activating component over surfaces of the activating particles.