Abstract:
The present invention describes a novel abrasive tool that contains abrasive particles distributed in a predetermined pattern. Such a pattern is produced by fabricating two-dimensional slices and subsequently assembling and consolidating them into a three-dimensional tool. Abrasive particles 20 may be incorporated during the process of making these two-dimensional slices, or they may be planted afterwards into these slices 100 that contains matrix powder. In the latter case, the planting may be guided by a template 110 with apertures 114 laid in a specific pattern.
Abstract:
A coated particle for synthesizing diamond includes: a single crystal of a fine diamond particle coated with at least one layer which contains at least one kind of solvent metal powder for synthesizing diamond and/or at least one kind of solvent metal powder with organic bonding material. Diamond abrasive particles for sawing are produced by a process which includes the steps of: coating fine diamond particles with at least one layer which contains at least one kind of solvent metal powder for synthesizing diamond and/or at least one kind of solvent metal powder with organic bonding material, filling a molding with the coated fine diamond particles, compacting, arranging a compact in a synthesizing vessel, heating the compact to a temperature above a solvent metal-graphite melting point under a pressure condition in which diamond is thermodynamically stable, and recovering the diamond abrasive particles.
Abstract:
A colorless, transparent low defect density, synthetic type IIa diamond single crystal, in which the etch pits due to needle-shaped defects are at most 3.times.10.sup.5 pieces/cm.sup.2, and which can be applied to uses needing high crystallinity of diamond, for example, monochromators, semiconductor substrates, spectroscopic crystals in X-ray range, electronic materials, etc., is provided by a process for the production of the colorless, transparent low defect density, synthetic diamond single crystal by growing new diamond crystal on a seed crystal of diamond by the temperature gradient method which comprises using a crystal defect-free diamond single crystal, as a seed crystal of diamond, and optionally subjecting to a heat treatment in a non-oxidizing atmosphere at a low pressure and a temperature of 1100 to 1600.degree. C.
Abstract translation:无色,透明的低缺陷密度的合成IIa型金刚石单晶,其中由于针状缺陷引起的蚀刻坑最多为3×10 5个/ cm 2,并且其可以应用于需要高结晶度的金刚石,例如, 单色仪,半导体衬底,X射线范围内的分光晶体,电子材料等,通过生产无色透明低缺陷密度合成金刚石单晶的方法提供,通过在晶种上生长新的金刚石晶体 金刚石,其包括使用无晶体缺陷金刚石单晶作为金刚石的晶种,并且可选地在低压和1100至1600℃的非氧化性气氛中进行热处理。 C。
Abstract:
Diamonds are synthesized from SiC at temperatures and/or pressures lower than those required to convert amorphous carbon or graphite to diamond, by heating the SiC in the absence of another non-diamondaceous source of elemental carbon and in the presence of a reactant which selectively reacts with the Si at the temperature to which the SiC is heated, and in a matrix which is frangible when cooled, while the Sic is within the diamond stable region of the diamond-graphite phase diagram, thereby permitting the diamond to be separated therefrom by physical means.
Abstract:
A process for fabricating diamond from a starting powder material containing carbon as the principal component, and said process comprising bringing said powder material under high pressure, wherein, said powder material containing carbon as the principal component is a powder material containing C.sub.60 and/or carbon microtubules as the principal component, andsaid powder material is brought under high pressure by applying a gradient pressure to the material, while the portion of the powder material to which maximum pressure is applied is irradiated by a laser beam optionally through a diamond window material. An apparatus for fabricating diamond is also described.
Abstract:
Synthesis of diamond by the so-called thin solvent film method is improved to obtain diamond crystals with a large grain size and good quality in an economical manner. To this end, using a reaction system comprising diamond seed crystal, a carbon source and a solvent metal, one or more masses of the solvent metal are arranged independently of each other and the diamond seed crystals are arranged in such a manner that one surface of the diamond seed crystal is contacted with each solvent metal mass.
Abstract:
A composite material useful as a diode capable of operating at a high temperature, i.e., 500.degree. to 600.degree. C. or a semiconductor optical device capable of emitting ultraviolet rays is provided which comprises an electrically insulating single crystal diamond substrate and single crystal cubic boron nitride directly formed on one surface of the single crystal diamond in such a manner that the single crystal cubic boron nitride has the same plane index as the substrate.
Abstract:
Diamond crystals are grown by subjecting reaction materials of nondiamond carbon, a solvent metal, and diamond seeds to pressure and temperature conditions in the diamond-stable region. The reaction materials are in the form of a pair of a superimposed solvent metal plate and a nondiamond carbon plate or a pile made of a plurality of the pairs of the superimposed solvent metal plate and nondiamond carbon plate, and a plurality of the seeds are disposed on either one or each of the confronting surfaces of the pair of the superimposed solvent metal plate and nondiamond carbon plate. Alternatively, the reaction materials are in the form of a plate made of a mixture of the solvent metal and the nondiamond carbon or a pile made of a plurality of the mixture plates, and a plurality of the seeds are disposed on a surface of each plate. The seeds have a particle size of not larger than 50 .mu.m and are regularly disposed in such a manner that the seeds are located at a substantially equal distance and the distance between the peripheries of every two adjacent growth diamond crystal particles is from 50 to 300 .mu.m. The diamond crystals are allowed to grow until their sizes reach at least five times the size of the seeds.
Abstract:
An artificial diamond single crystal, a process for producing it, and tools for utilizing it are disclosed. The artificial diamond crystal has at least one surface which has a rough surface formed by suppressed crystal growth at that surface. The single crystal is produced by providing a diamond synthesis reaction system comprised of a reaction chamber, a carbon source and a solvent metal arranged in contact with the carbon source. A seed crystal is provided in the reaction chamber under elevated pressures and temperatures which permit diamond to be maintained thermodynamically stable. The reaction system is heated to provide a temperature gradient in such a way that a portion of the solvent metal in contact with the carbon source is higher in temperature than a portion of the solvent metal in contact with the seed crystal. This temperature gradient causes a migration of the carbon from the higher temperature portion to the lower temperature portion using the solvent metal as a medium. This allows the carbon to precipitate and grow as diamond on the seed crystal due to the difference in solubility caused by the temperature gradient. The conditions in the reaction chamber housing are maintained so as to suppress crystal growth in at least one direction perpendicular to the direction of the temperature gradient, at the end of the solvent metal. The suppressed crystal growth provides the rough surface of the single crystal which can be connected to a tool and thus provides good adherence between the crystal and the tool.
Abstract:
Means are described for suppressing spontaneous diamond nucleation in the vicinity of diamond seed material located in reaction vessel construction used in the growth of diamond by the process disclosed in U.S. Pat. No. 3,297,407--Wentorf, Jr.In assembly of the reaction vessel a portion of the lower surface of the plug of catalyst-solvent metal is disposed in contact with the diamond seed material. Preferably all of the balance of the lower surface area of the catalyst-solvent plug adjacent the seed material is covered with a disc or layer of a material different from the catalyst-solvent metal employed and selected from a list of specific materials that suppress diamond nucleation.