Abstract:
Disclosed is a catalyst composition based on an indium salt and an organic ionic liquid, a process for making the catalyst composition, and uses thereof. The catalyst composition is particularly suitable for Lewis acid catalysed electrophilic aromatic substitution reactions, such as Friedel-Crafts alkylation reactions an Friedel-Crafts acylation reactions.
Abstract:
A process of using a catalyst composition to polymerize at least one monomer to produce a polymer. The process comprises contacting the catalyst composition and at least one monomer in a polymerization zone under polymerization conditions to produce the polymer. The catalyst composition is produced by a process comprising contacting at least one organometal compound, at least one treated solid oxide compound, and at least one organoaluminum compound.
Abstract:
A process in gaseous phase to obtain CFC 113a starting from CFC 113, wherein CFC 113, optionally diluted with a gas inert under the reaction conditions, is let flow on a catalyst formed by aluminum fluoride.
Abstract:
A reaction method by a novel Lewis acid catalyst stable in water for organic synthesis by using a metal compound stable in water and functioning as a Lewis acid catalyst and using water as apart or all of a solvent, the metal ion of the metal compound having a hydrolysis constant (pKh) of: 4.3≦pKh≦10.1 and a water exchange rate constant (WERC) of 3.2×106M−1sec−1 or more.
Abstract:
A process is disclosed for producing hydrocarbons. The process involves contacting a feed stream comprising hydrogen and carbon monoxide with a catalyst in a reaction zone maintained at conversion-promoting conditions effective to produce an effluent stream comprising hydrocarbons. In accordance with this invention the catalyst used in the process includes at least one catalytic metal for Fischer-Tropsch reactions (e.g., iron, cobalt, nickel and/or ruthenium); and a support selected from the group consisting of an aluminum fluoride and fluorided aluminas.
Abstract:
A process is disclosed for producing hydrocarbons. The process involves contacting a feed stream comprising hydrogen and carbon monoxide with a catalyst in a reaction zone maintained at conversion-promoting conditions effective to produce an effluent stream comprising hydrocarbons. In accordance with this invention, the catalyst used in the process includes at least cobalt, rhenium, and a promoter selected from the group including boron, phosphorus, potassium, manganese, and vanadium. The catalyst may also comprise a support material selected from the group including silica, titania, titania/alumina, zirconia, alumina, aluminum fluoride, and fluorided aluminas.
Abstract:
A supported Lewis acid catalyst system effective for hydrocarbon conversion reactions including cationic polymerization, alkylation, isomerization and cracking reactions and comprising at least one Lewis acid immobilized on an anhydrous dihalide of Cd, Fe, Co, Ni, Mn or Mg is disclosed.
Abstract:
A process is disclosed for producing hydrocarbons. The process involves contacting a feed stream comprising hydrogen and carbon monoxide with a catalyst in a reaction zone maintained at conversion-promoting conditions effective to produce an effluent stream comprising hydrocarbons. In accordance with this invention the catalyst used in the process includes at least one catalytic metal for Fischer-Tropsch reactions (e.g., iron, cobalt, nickel and/or ruthenium); and a support selected from the group consisting of an aluminum fluoride and fluorided aluminas.
Abstract:
The present invention relates to a method for producing 1,1,1,3,3-pentafluoropropane. This method includes a first step of fluorinating 1-chloro-3,3,3-trifluoropropene in a liquid phase by hydrogen fluoride in the presence of an antimony compound as a catalyst, or a second step of fluorinating 1-chloro-3,3,3-trifluoropropene in a gas phase by hydrogen fluoride in the presence of a fluorination catalyst. If the first step is taken, 1,1,1,3,3-pentafluoropropane can be produced with a high yield. If the second step is taken, 1,1,1,3,3-pentafluoropropane can continuously be easily produced. Therefore, the second step is useful for an industrial scale production thereof. According to the invention, 1-chloro-3,3,3-trifluoropropene may be produced by a method including a step of reacting 1,1,1,3,3-pentachloropropane with hydrogen fluoride in a gas phase in the presence of a fluorination catalyst. This method is useful, because yield of 1-chloro-3,3,3-trifluoropropene is high.
Abstract:
Catalyst comprising a supported Cr(III) amorphous compound, characterized in that the support is formed by an aluminum trifluoride (AlF3) having an high surface area obtainable by alumina fluorination with gaseous HF at an initial temperature lower than 300° C., the temperature is rised with a temperature gradient≦100° C./hour up to the final temperature>320° C. and