摘要:
A laser welding method includes a pretreatment process and a welding process. At least one metal member of the plurality of metal members is formed from a metal-plated steel plate in which a base metal has been covered with a coating material that has a melting point lower than the base metal. In the pretreatment process, with the position of the first metal member in the in-plane direction fixed, processing is performed from the front surface of the first metal member to form on the back surface, a protrusion that bulges from the back surface. Then, in the welding process, the first metal member in which a protrusion has been formed is superposed on a second metal member with the protrusion therebetween while maintaining the position in the in-plane direction, and laser light is irradiated on the superposed region to weld the plurality of metal members to each other.
摘要:
The invention discloses a device for laser material machining, with at least two laser beam sources (2a-2c) which emit laser beams (5a-5c) of different wavelengths, with associated beam imaging means (3a-3c), to configure appropriately the beam paths of each associated laser beam (5a-5c), a beam superposition device (6), to overlay the laser beams (5a-5c) on each other, and imaging optics (8), to image the overlaid laser beams (5a-5c) onto a workpiece (12) so that respective focal points are associated with the laser beams (5a-5c) in the focus of the imaging optics (8) on the workpiece (12), wherein the beam imaging means image the laser beams (5a-5c) onto the respective focal points in a predefined arrangement which can be varied by means of the beam imaging means (3a-3c). According to the invention, electronic control devices (4a-4c) are provided which are able to vary each of the outputs of the laser beams (5a-5c) with a high frequency to vary the intensities of the respective focal points at the focus of the imaging optics (8) in a predefined manner. In this way, a high frequency control of the parameters of laser material machining which can be combined with conventional modulation techniques is implemented.
摘要:
A method of manufacturing a replacement body for a component is provided. The method includes the steps of: a) additively manufacturing a crucible for casting of the replacement body; b) solidifying a metal material within the crucible to form a directionally solidified microstructure within the replacement body; and c) removing the crucible to reveal the directionally solidified replacement body.
摘要:
The inventions disclosed by this application are for a cladding apparatus, a cladding head, and a method of cladding a relatively planar solid object such as a boiler waterwall. Cladding of non-horizontal surfaces is complicated by the effects of gravity as melted clad material trends to runoff the surface before the cladding material bonds to the appropriate location. The disclosed inventions overcome these limitations by controlling the relative angle of application by either rotating the workpiece or the cladding head through a pre-programmed sequence. Also presented in a compact design for a laser cladding head that facilitates such cladding by minimizing movement of the laser fiber and improves cladding speed over irregular shaped objects.
摘要:
Apparatus and a method for forming a metallic component by additive layer manufacturing are provided. The method includes the steps of mounting a work piece (3) to ALM manufacturing apparatus including measuring means in the form of load cells (13, 14) to measure stresses tending to distort the work piece, using a laser heat source (24) to apply heat to a surface (18) of the work piece (3) sufficient to melt it; adding metallic material to the melted surface (18) and moving the heat source (24) relative to the work piece (3) whereby progressively to form a layer (30) of metallic material on it; repeating the above steps as required, whereby progressively to form the component and, while doing so, measuring stresses tending to distort the component with the load cells (13, 14) and, if they are above a predetermined threshold, stress relieving the work piece with means such as a pulsed laser (27) while still mounted to the apparatus to reduce distortion to a predetermined level, and again repeating above steps as required to complete the component. A computer (16) may be included to control the whole process.
摘要:
A vertical laser cladding system is particularly effective for the interior surfaces of tube-like structures. The vertical cladding process works from bottom to top, so that previously clad layers form a shelf for subsequent application of cladding powder. This system is also particularly effective for handling double-bore plasticating barrels.
摘要:
A method and system to weld or join workpieces employing a high intensity energy source to create a weld puddle and at least one resistive filler wire which is heated to at or near its melting temperature and deposited into the weld puddle.
摘要:
A method and system to manufacture closed cooling channels employing a high intensity energy source to and a filler substrate material on which a layer is formed before the removal of the substrate material.
摘要:
Systems and methods consistent with embodiments of the present invention are directed to depositing a consumable onto a workpiece using a hot-wire welding technique which employs a combination of hot wire and arc welding. The waveform creates arc events during the hot wire welding operation to add/control heat in the welding process. The hot-wire welding process can be used by itself, with a laser or in conjunction with other welding processes.
摘要:
In a method for controlling an irradiation system (20) for use in an apparatus (10) for producing a three-dimensional work piece and comprising a first and a second irradiation unit (22a, 22b) a first irradiation area (18a) is defined on a surface of a carrier (16) adapted to receive a layer of raw material powder. A layer of raw material powder applied onto the carrier (16) in the first irradiation area (18a) is irradiated by the first irradiation unit (22a) of the irradiation system (20), wherein the operation of the first irradiation unit (22a) is controlled in such a manner that the raw material powder is pre-heated. Thereafter the layer of raw material powder applied onto the carrier (16) in the first irradiation area (18a) is irradiated by means of the second irradiation unit (22b) of the irradiation system (20), wherein the operation of the second irradiation unit (22b) is controlled in such a manner that the raw material powder is heated to a temperature which allows sintering and/or melting of the raw material powder in order to generate a layer of the three-dimensional work piece.