Abstract:
A driving separation indication system for a vehicle includes an imaging sensor, a control and at least one indicator. The control is operable to process an image captured by the imaging sensor representative of a scene occurring exteriorly of the subject vehicle and to detect another vehicle via processing of the image. The control is operable to determine a threshold interspacing distance in response to a speed of the subject vehicle, and is operable to determine a distance from the subject vehicle to the detected other vehicle. The control is operable to at least occasionally actuate the indicator in response to the distance from the subject vehicle to the other vehicle being less than or equal to the threshold interspacing distance. The control may generally continuously determine the speed of the vehicle and the threshold interspacing distance to provide an appropriate threshold interspacing distance.
Abstract:
A vehicle traveling control system is comprised of a following controller and a lane-keeping controller. The following controller controls an inter-vehicle distance between a host vehicle and a following object ahead of the host vehicle by controlling a vehicle speed on the basis of a detected inter-vehicle distance. The lane-keeping controller controls a steering control of the host vehicle so as to locate the host vehicle within a lane traveled by the host vehicle. A control condition of one of the following control and the steering control is changed according to the control condition of the other of the following control and the steering control.
Abstract:
GPS satellite (4) ranging signals (6) received (32) on comm1, and DGPS auxiliary range correction signals and pseudolite carrier phase ambiguity resolution signals (8) from a fixed known earth base station (10) received (34) on comm2, at one of a plurality of vehicles/aircraft/automobiles (2) are computer processed (36) to continuously determine the one's kinematic tracking position on a pathway (14) with centimeter accuracy. That GPS-based position is communicated with selected other status information to each other one of the plurality of vehicles (2), to the one station (10), and/or to one of a plurality of control centers (16), and the one vehicle receives therefrom each of the others' status information and kinematic tracking position. Objects (22) are detected from all directions (300) by multiple supplemental mechanisms, e.g., video (54), radar/lidar (56), laser and optical scanners. Data and information are computer processed and analyzed (50,52,200,452) in neural networks (132, FIGS. 6-8) in the one vehicle to identify, rank, and evaluate collision hazards/objects, an expert operating response to which is determined in a fuzzy logic associative memory (484) which generates control signals which actuate a plurality of control systems of the one vehicle in a coordinated manner to maneuver it laterally and longitudinally to avoid each collision hazard, or, for motor vehicles, when a collision is unavoidable, to minimize injury or damage therefrom. The operator is warned by a heads up display and other modes and may override. An automotive auto-pilot mode is provided.
Abstract:
A distance control is performed to maintain a target distance between two traveling vehicles by controlling an acceleration/deceleration actuator based on a physical quantity representing an actual distance between the two traveling vehicles. A temporary distance control is performed to suppress a deceleration degree of a succeeding vehicle to a smaller value compared with a deceleration degree attainable during an ordinary distance control, when the two traveling vehicles are departing from each other under a condition where the actual distance between the two traveling vehicles is already shorter or will soon become shorter than a standard target distance.
Abstract:
A vehicular active drive assist system including a lane deviation judgment unit which judges the possibility of deviation of own vehicle from a traffic lane on a roadway ahead and a warning control unit which controls a warning based on judgment results fed from the lane deviation judgment unit, wherein the lane deviation judgment unit sets a first judgment line approximately parallel to a lateral direction of the own vehicle at a first distance ahead of the own vehicle, sets a second judgment line approximately parallel to the lateral direction of the own vehicle at a second distance ahead of the own vehicle, makes a judgment on the possibility of deviation from the traffic lane based on the location of the own vehicle and the location of lane markings on the first judgment line, makes another judgment on the possibility of deviation from the traffic lane based on the location of the own vehicle and the location of the lane markings on the second judgment line, and finally judges the possibility of deviation from the traffic lane based on the results of these two judgments.
Abstract:
GPS satellite (4) ranging signals (6) received (32) on comm1, and DGPS auxiliary range correction signals and pseudolite carrier phase ambiguity resolution signals (8) from a fixed known earth base station (10) received (34) on comm2, at one of a plurality of vehicles/aircraft/automobiles (2) are computer processed (36) to continuously determine the one's kinematic tracking position on a pathway (14) with centimeter accuracy. That GPS-based position is communicated with selected other status information to each other one of the plurality of vehicles (2), to the one station (10), and/or to one of a plurality of control centers (16), and the one vehicle receives therefrom each of the others' status information and kinematic tracking position. Objects (22) are detected from all directions (300) by multiple supplemental mechanisms, e.g., video (54), radar/lidar (56), laser and optical scanners. Data and information are computer processed and analyzed (50,52,200,452) in neural networks (132, FIGS. 6-8) in the one vehicle to identify, rank, and evaluate collision hazards/objects, an expert operating response to which is determined in a fuzzy logic associative memory (484) which generates control signals which actuate a plurality of control systems of the one vehicle in a coordinated manner to maneuver it laterally and longitudinally to avoid each collision hazard, or, for motor vehicles, when a collision is unavoidable, to minimize injury or damage therefrom. The operator is warned by a heads up display and other modes and may override. An automotive auto-pilot mode is provided.
Abstract:
A vehicular control system includes a plurality of cameras that capture image data, at least one radar sensor that senses radar data and a control that processes image data captured by the cameras and sensed radar data. The control, responsive to processing of captured image data, detects lane markers and/or road edges and determines curvature of the road being traveled by the equipped vehicle. The control processes captured image data and sensed radar data to detect vehicles. The control, based on processing of captured image data and/or sensed radar data, detects another vehicle and determines distance from the equipped vehicle to the detected other vehicle. The control may, based at least in part on the detection of another vehicle and the determination of distance from the equipped vehicle to the detected other vehicle, determine whether it is safe for the equipped vehicle to execute a lane change maneuver.
Abstract:
A driver assistance system for a vehicle includes a forward-viewing camera disposed in a windshield electronics module attached at a windshield of the vehicle and viewing through the windshield. A control includes a processor that, responsive to processing of captured image data, detects lane markers on a road being traveled by the vehicle. The processor determines curvature of the road being traveled by the vehicle and detects another vehicle that is present exterior of the equipped vehicle and determines that the detected other vehicle is in the same traffic lane as the equipped vehicle or is in an adjacent traffic lane. The processor processes captured image data to determine distance from the equipped vehicle to the detected other vehicle that is present exterior of the equipped vehicle and within the exterior field of view of the forward-viewing camera. The processor processes captured image data for vehicle speed control.
Abstract:
In a method and apparatus for assisting the driver of a vehicle in maintaining a traffic lane limited by traffic lane markings, the traffic lane markings and the position of the vehicle in the traffic lane are detected. Upon an actual or impending change of traffic lanes a lane change warning is output to the driver of the vehicle in a first step, and a course correcting actuating intervention counteracting the lane change is carried out in a second step. The actuating intervention is carried out only if the change of traffic lanes is impermissible due to the type of traffic lane marking to be crossed during the traffic lane change, or if the lane change is not possible without danger due to collision-endangering objects present on the side of the traffic lane.
Abstract:
An imaging system for a vehicle includes an imaging sensor and a control. The imaging sensor is operable to capture an image of a scene occurring exteriorly of the vehicle. The control is responsive to the imaging sensor. The imaging system may be associated with a side object detection system, a lane change assist system, a lane departure warning system, a monitoring system, a passive steering system and/or the like. The control may be operable to process a reduced image data set more than other image data, which are representative of areas of the captured image outside of a target zone, to detect objects present within the target zone.