摘要:
A vehicle air conditioner includes: a heat pump cycle including an inside heat exchanger performing heat exchange between a refrigerant and a blown air that is to be blown into a vehicle compartment, and a refrigerant-circuit switching device that switches between a refrigerant circuit of a cooling mode in which the blown air is cooled in the inside heat exchanger and a refrigerant circuit of a non-cooling mode in which the blown air is not cooled in the inside heat exchanger; and a refrigerant-circuit controller that controls an operation of the refrigerant-circuit switching device. The refrigerant-circuit controller performs a cooling-mode unallowable control in which the refrigerant circuit of the cooling mode is prohibited from being selected after the non-cooling mode is selected during a predetermined time period.
摘要:
This patent is directed to an external air conditioning system connected to a parked airplane. The system has multiple refrigeration units. Each refrigeration unit has a controller. Each refrigeration unit's controlled is linked to a common controller. A single stream of air flows through all of the evaporators in series. Each of the refrigeration units has multiple compressors. Additional compressors are activated or deactivated based on refrigerant pressure. The activation or deactivation pressures are staggered across the refrigeration units, thus coordinating operation of the multiple refrigeration units.
摘要:
A method for controlling an air conditioning system, an outdoor apparatus of an air conditioning system and an air conditioning system are provided. The method includes: obtaining a working mode of the air conditioning system and starting a variable-frequency compressor in an outdoor apparatus of the air conditioning system according to the working mode; obtaining a target refrigerant saturation temperature; performing a variable-frequency control on the variable-frequency compressor according to the target refrigerant saturation temperature; during the variable-frequency control, obtaining a working time of the variable-frequency compressor and a stop-start number of time of the variable-frequency compressor in a first predetermined period; and adjusting the target refrigerant saturation temperature according to the working time of the variable-frequency compressor and the stop-start number of time of the variable-frequency compressor in the first predetermined time.
摘要:
Methods of monitoring operation of a refrigerant-cycle system are disclosed. The methods include: measuring a first pressure of refrigerant input to a compressor of the refrigerant-cycle system using a first pressure sensor; measuring a first temperature of the refrigerant input to the compressor using a first temperature sensor; measuring a second pressure of refrigerant output by the compressor and input to a condenser of the refrigerant-cycle system using a second pressure sensor; measuring a second temperature of refrigerant output by the condenser using a second temperature sensor; measuring a third pressure of refrigerant output by the condenser using a third pressure sensor; and measuring current to the compressor using an electrical sensor. The methods further include identifying conditions of the refrigerant-cycle system based on the first temperature, the first pressure, the second temperature, the second pressure, the third pressure, and the current.
摘要:
A container refrigeration device aims to prevent low temperature damage to freight in a container. The container refrigeration device includes: a temperature controlling section (101) configured to perform, in a switchable manner, first temperature control under which a temperature inside the container (C) is controlled based on a blown air temperature (Tss) and second temperature control under which the temperature inside the container (C) is controlled based on a suction air temperature (Trs) during dehumidification operation; and a control switching section (103) configured to switch the first temperature control to the second temperature control when the blown air temperature (Tss) is higher than the suction air temperature (Trs) during the dehumidification operation in which part of a refrigerant discharged from a compressor (30) is allowed to flow into a reheat heat exchanger (83).
摘要:
A air conditioning control device is configured to estimate whether or not the temperature of refrigerant on a high-pressure side in a heat pump device is equal to or lower than a predetermined low temperature and to switch a flow path switching device to an air-heating start-up mode when it is estimated that the temperature of refrigerant on the high-pressure side in the heat pump device is equal to or lower than the predetermined low temperature and switch the flow path switching device to a normal air-heating mode when it is estimated that the temperature of refrigerant on the high-pressure side in the heat pump device is higher than the predetermined low temperature.
摘要:
An air conditioner includes a refrigerant circuit, an electromagnetic induction heating unit, and a control unit. The refrigerant circuit has a compressing mechanism with an adjustable operating capacity, a heat source side heat exchanger, an expansion mechanism, and a utilization side heat exchanger. The electromagnetic induction heating unit heats a refrigerant piping and/or a member that is in thermal contact with a refrigerant that flows through the refrigerant piping. The control unit sets the electromagnetic induction heating unit to a forced inhibit state if any one of a condition in which the electromagnetic induction heating unit has been manually set to operation inhibited; a condition in which an air conditioning load is small; and a condition in which an amount of circulating refrigerant is small is satisfied.
摘要:
The air-conditioning apparatus includes a compressor; a heat source side heat exchanger; a use side pressure-reducing mechanism; a use side heat exchanger and an accumulator connected by a pipe so that a refrigerant circulates therethrough; a high-low pressure bypass pipe; a high-low pressure bypass unit installed in the high-low pressure bypass pipe; and a unit controller configured to perform a refrigerant amount detection operation in which an operation frequency of the compressor is controlled so that a value of an evaporating temperature becomes an evaporating temperature target value of the compressor to discharge a liquid-state refrigerant of the refrigerant from the accumulator, and control an opening degree of the high-low pressure bypass unit in performing the refrigerant amount detection operation.
摘要:
A heat pump apparatus includes: a refrigerant circuit which includes a compressor, a utilization-side heat exchanger for exchanging heat between water and refrigerant, an electronic expansion valve, and an outdoor heat exchanger; a controller which controls the compressor and the electronic expansion valve; a subcooling value calculating unit which calculates a subcooling value of the refrigerant circuit; a condensing pressure detector which detects condensing pressure of the compressor; a compressor rotation number detector which detects rotation number of the compressor; and an objective subcooling value extracting unit which selects and extracting an objective subcooling value stored in advance, from the condensing pressure and the rotation number of the compressor. The controller adjusts an opening degree of the electronic expansion valve so that the calculated subcooling value of the refrigerant circuit reaches the objective subcooling value.
摘要:
A heat pump system includes a refrigerant circuit and a controller. In a heating operation, the usage-side expansion valve is controlled so that a degree of subcooling of outlet refrigerant of the usage-side heat exchanger is equal to a predetermined target degree of subcooling. In a refrigerant recovery control, the heat-source-side expansion valve is controlled so that a degree of superheat of outlet refrigerant of the heat-source-side heat exchanger is equal to a predetermined target degree of superheat, the predetermined target degree of superheat is changed so that the outlet refrigerant of the heat-source-side heat exchanger is wet when the usage-side expansion valve is opened greater than a predetermined opening degree at a start of refrigerant recovery, and change in the predetermined target degree of superheat is cancelled when the usage-side expansion valve is closed smaller than a predetermined opening degree at an end of refrigerant recovery.