Abstract:
An assembly for Kratky collimator is provided. The assembly may be used for a small angle x-ray camera or system requiring such filtering. The assembly may include a first block with a first working surface and a second block with a second working surface. The first and second blocks may be aligned with the first working surface pointing an opposite direction of the second working surface and the first working surface being aligned in a common plane with the second working surface. In some implementations, the first block may comprise a crystal material. In some implementations, an extension may of the first block may be configured position a beamstop.
Abstract:
An apparatus for examining the surface of a crystalline sample uses in-plane grazing incidence diffraction with a position-sensitive detector. The x-ray source illuminates an extended region of the sample and, for crystal sections having the appropriate lattice orientation, an elongated diffraction signal is produced. The relative position of the sample and the x-ray beam may then be changed to illuminate different regions of the sample so that the diffraction signal corresponds to these other regions. By scanning across the entire sample, a spatial profile of the sample surface may be generated. The system may be used to locate crystal boundaries, defects, or the presence of attenuating materials on the sample surface.
Abstract:
Disclosed are apparatus and methods for performing small angle x-ray scattering metrology. This system includes an x-ray source for generating x-rays and illumination optics for collecting and reflecting or refracting a portion of the generated x-rays towards a particular focus point on a semiconductor sample in the form of a plurality of incident beams at a plurality of different angles of incidence (AOIs). The system further includes a sensor for collecting output x-ray beams that are scattered from the sample in response to the incident beams on the sample at the different AOIs and a controller configured for controlling operation of the x-ray source and illumination optics and receiving the output x-rays beams and generating an image from such output x-rays.
Abstract:
A detector for a small-angle x-ray diffraction system uses curved readout strips shaped to correspond to the expected intensity distribution of x-rays scattered by the system. This expected intensity distribution may be a series of concentric circles, and each of the strips has a shape that approximates a section of an annulus. The strips may be positioned on a substrate such that a center of curvature of the curved strips is located along an edge of a readout region within which the strips are located or, alternatively, at a geometric center of the readout region. The detector may have a signal readout system that uses a delay line or, alternatively, a multichannel readout system. The detector may make use of electron generation via interaction of the diffracted x-ray beam with a gas in a gas chamber, or through interaction of the diffracted beam with a semiconductor material.
Abstract:
In accordance with an embodiment, a measuring apparatus includes a stage, an electromagnetic wave applying unit, a detector, a monitor, a detector location adjusting unit, and a measuring unit. The stage supports a substrate comprising a periodic structure on a main surface thereof. The electromagnetic wave applying unit generates electromagnetic waves and applies the electromagnetic waves to the substrate. The detector detects the intensity of the electromagnetic waves scattered or reflected by the substrate with the use of two-dimensionally arranged detection elements, and then outputs a signal. The monitor processes the signal from the detector to acquire a first scatter profile, and measure a positional deviation of the detector in accordance with the first scatter profile. The detector location adjusting unit corrects the positional deviation of the detector in accordance with the measured positional deviation. The measuring unit calculates a surface shape of the periodic structure.
Abstract:
An apparatus and method for inspecting personnel or their effects. A first and second carriage each carries a source for producing a beam of penetrating radiation incident on a given subject. A positioner provides for relative motion of each beam vis-à-vis the subject in a motion, the vertical component of which is one-way. A detector receives radiation produced by at least one of the sources after the radiation interacts with the subject.
Abstract:
The present application discloses methods and systems for scanning an object. The scanning system provides a first detector region having a thickness of at least 2 mm and a second detector region having a thickness of at least 5 mm. The second detector region is arranged to receive radiation that has passed through the first detector region. The method includes irradiating the object with radiation having a peak energy of a least 1 MeV, and detecting the first profile radiation after it has interacted with or passed through the object in order to provide information relating to the object.
Abstract:
A system for analyzing a sample is provided. The system includes a beam selection device for selecting between a one-dimensional operation mode for providing a one-dimensional x-ray beam to the sample and a two-dimensional operation mode for providing a two-dimensional x-ray beam to the sample.
Abstract:
Radiation is directed at an object, and radiation scattered by the object is sensed. An angular distribution of scatter in the sensed scattered radiation relative to a path of the radiation directed at the object is determined, and the angular distribution is evaluated. One or more atomic numbers, or effective atomic numbers, of materials composing the object is determined based on evaluating the angular distribution.
Abstract:
Performing an analysis of an electronic device sample by measuring a property at a plurality of points of said electronic device sample, and in advance of said analysis subjecting said plurality of points to at least one treatment that increases the difference in said property between at least two elements of said electronic device sample.