摘要:
An Atmospheric Pressure Chemical Ionization (APCI) source interfaced to a mass spectrometer is configured with a corona discharge needle positioned inside the APCI inlet probe assembly. Liquid sample flowing into the APCI inlet probe is nebulized and vaporized prior to passing through the corona discharge region all contained in the APCI inlet probe assembly Ions produced in the corona discharge region are focused toward the APCI probe centerline to maximize ion transmission through the APCI probe exit. External electric fields penetrating into the APCI probe exit end opening providing additional centerline focusing of sample ions exiting the APCI probe. The APCI probe is configured to shield the electric field from the corona discharge region while allowing penetration of an external electric field to focus APCI generated ions into an orifice into vacuum for mass to charge analysis. Ions that exit the APCI probe are directed only by external electric fields and gas flow maximizing ion transmission into a mass to charge analyzer. The new APCI probe can be configured to operate as a stand alone APCI source inlet probe, as a reagent ion gun for ionizing samples introduced on solids or liquid sample probes or through gas inlets in a multiple function ion source or as the APCI portion of a combination Electrospray and APCI multiple function ion source. Sample ions and gas phase reagent ions are generated in the APCI probe from liquid or gas inlet species or mixtures of both.
摘要:
Provided is a small-sized mass analysis system capable of analyzing an analysis target system being under atmospheric pressure. The mass analysis system (7) has a cyclone separator (1) including a hollow shaft motor (19) for rotationally driving a turbo blade (17). Combining a mass analysis device with the cyclone separator makes it possible to remove dust and introduce into the mass analysis device a gas present in a region where the pressure in the cyclone separator is sufficiently reduced.
摘要:
Embodiments of the present invention are directed to devices and methods for performing an analysis of a sample having a sample surface. The device and method feature a frame element affixed to a sample holder, jet element and a charged particle analyzer having an ion receiving orifice. The jet element directs a jet of gas towards the sample surface held by said sample holder focused on less than 2.0 mm2 of the sample surface. Ions formed by the electrode means are received by a charged particle analyzer having a ion receiving orifice for receiving one or more sample ions and performing a charged particle analysis with respect to the sample surface. The sample holder moves with respect to the jet element, and charged particle analyzer to permit scanning of a sample surface.
摘要:
The present invention provides for a system, method, and device for analyzing, localizing and/or identifying tissue types. The method includes analyzing, localizing and/or identifying one or more tissue samples, characterized in that the method comprises: (a) generating gaseous tissue particles from a site in the one or more tissue samples, (b) transporting the gaseous tissue particles from the site to an analyser, (c) using the analyser for generating tissue-related data based on the gaseous tissue particles, and (d) analyzing, localizing and/or identifying the one or more tissue samples based on the tissue-related data. The invention can either be used in close conjunction with a surgical procedure, when one or more surgical tools are an integrated part of ionization, or as a separate mass spectrometric probe for the analysis of one or more tissue parts.
摘要:
An Atmospheric Pressure Chemical Ionization (APCI) source interfaced to a mass spectrometer is configured with a corona discharge needle positioned inside the APCI inlet probe assembly. Liquid sample flowing into the APCI inlet probe is nebulized and vaporized prior to passing through the corona discharge region all contained in the APCI inlet probe assembly Ions produced in the corona discharge region are focused toward the APCI probe centerline to maximize ion transmission through the APCI probe exit. External electric fields penetrating into the APCI probe exit end opening providing additional centerline focusing of sample ions exiting the APCI probe. The APCI probe is configured to shield the electric field from the corona discharge region while allowing penetration of an external electric field to focus APCI generated ions into an orifice into vacuum for mass to charge analysis. Ions that exit the APCI probe are directed only by external electric fields and gas flow maximizing ion transmission into a mass to charge analyzer. The new APCI probe can be configured to operate as a stand alone APCI source inlet probe, as a reagent ion gun for ionizing samples introduced on solids or liquid sample probes or through gas inlets in a multiple function ion source or as the APCI portion of a combination Electrospray and APCI multiple function ion source. Sample ions and gas phase reagent ions are generated in the APCI probe from liquid or gas inlet species or mixtures of both.
摘要:
A multiple function atmospheric pressure ion source interfaced to a mass spectrometer comprises multiple liquid inlet probes configured such that the sprays from two or more probes intersect in a mixing region. Gas phase sample ions or neutral species generated in the spray of one probe can react with reagent gas ions generated from one or more other probes by such ionization methods as Electrospray, photoionization, corona discharge and glow discharge ionization. Reagent ions may be optimally selected to promote such processes as Atmospheric Pressure Chemical Ionization of neutral sample molecules, or charge reduction or electron transfer dissociation of multiply charged sample ions. Selected neutral reagent species can also be introduced into the mixing region to promote charge reduction of multiply charged sample ions through ion-neutral reactions. Different operating modes can be performed alternately or simultaneously, and can be rapidly turned on and off under manual or software control.
摘要:
Described herein is a field ionization and electron impact ionization device consisting of carbon nanotubes with microfabricated integral gates that is capable of producing short pulses of ions.
摘要:
An Atmospheric Pressure Chemical Ionisation (“APCI”) ion source is disclosed comprising a housing 14 having a corona discharge chamber 1, a reaction chamber 2 and a passage 6 connecting the corona discharge chamber 1 to the reaction chamber 2. Reagent ions are formed in the corona discharge chamber 1 and pass to the reaction chamber 2 via the passage 6. Analyte is sprayed into a heated tube 3. Low to moderately polar analyte molecules pass from the heated tube 3 into the reaction chamber 2 whereupon the analyte molecules are ionised by interacting with reagent ions. In contrast, highly polar analytes are ionised by thermal ionisation processes within the heated tube 3 and hence highly polar analyte ions pass into the reaction chamber 2. Analyte ions entering the reaction chamber 2 are substantially shielded from the effects of an electric field generated in the corona discharge chamber 1 as part of the process of generating reagent ions. The APCI ion source according to the preferred embodiment is able to optimally ionise a sample containing both low to moderately polar analytes and also highly polar analytes.
摘要:
The present invention provides, inter alia, apparatuses and methods for ionizing samples that are in gaseous phase or can be vaporized/sublimated. The samples include samples to be analyzed and mass calibrants that serve as standards. In addition, the present invention also provides calibrant formulations that release mass calibrants in a slow, controlled manner.