Abstract:
An assembled battery including a plurality of cells of cylindrical shape arranged in a plane including a diameter direction, each of the cells including a groove portion extending in a circumferential direction, and a fixing plate including an engagement portion engaging with each of the groove portions of the cells to fix the plurality of cells. A bus bar electrically connecting terminal electrodes of adjacent two of the cells may be fixed to the fixing plate.
Abstract:
The disclosure relates to a battery cell module including a plurality of lithium ion battery cells, each having a degassing opening, and a cover substantially sealingly connected to a corresponding surface of each of the battery cells. The cover defines a gas receiving space configured to at least temporarily receive gas escaping from the battery cells. The gas receiving space is open in the direction of the battery cells. The opening area of the gas receiving space extends across a plurality of the battery cells. The disclosure further relates to a method for producing a battery cell module, to a battery, and to a motor vehicle having the battery cell module or the battery.
Abstract:
A prismatic secondary battery includes a prismatic hollow outer body having a mouth and a bottom; a flat electrode assembly, a positive electrode collector, a negative electrode collector, and an electrolyte, all of which are stored in the prismatic outer body; a sealing plate sealing up the mouth of the prismatic outer body; and a positive electrode terminal attached to the sealing plate in an electrically insulated manner. The sealing plate includes a gas release valve and an electrolyte pour hole and further includes, on the front face, a concaved flat face having an identification code. With the prismatic secondary battery of the invention, a jig for assembly or the like is unlikely to come into contact with the identification code during an assembly process of the prismatic secondary battery, hence the identification code is unlikely to be abraded, and the traceability is unlikely to be lost.
Abstract:
A battery includes a case housing an electrode assembly, the case having an opening for receiving the electrode assembly, a cap plate combined with the opening so as to close the case, a first insulator on an outer surface of the cap plate, an electrode terminal electrically connected to the electrode assembly, the electrode terminal extending through a first terminal hole in the cap plate and a second terminal hole in the first insulator, a first connection portion that mates the cap plate to the first insulator so as to oppose rotation of the first insulator relative to the cap plate, the first connection portion being eccentric with respect to a central line of the first terminal hole, and a second connection portion that mates the first insulator to the electrode terminal so as to oppose rotation of the electrode terminal relative to the first insulator.
Abstract:
There is proposed a secondary battery with a large capacity that excels in safety by causing a safety valve to reliably operate to immediately discharge gas produced in the battery in a limited battery space for the purpose of increasing the capacity and the energy density of the battery. The present invention provides a secondary battery with a high battery capacity of 100 Ah or more. A cleavage valve 10 is formed with an opening pressure of 0.2 to 1.5 MPa. In addition, the cleavage valve 10 is configured such that the region provided with the cleavage valve 10 (safety valve region) occupies an area of 0.025 to 0.066 cm2 per 1 Ah of the battery capacity.
Abstract:
The battery of the present invention is provided with: a case having through holes; external terminals fixed in the through holes in the case in a state with part thereof protruding to the outside of the case; insulating members interposed between the case and the external terminals; flanged portions located at the peripheral edges of the through holes in the case protruding outward of the case; and reinforcing members that are disposed at the outer periphery of the flanged portions and reinforce the strength on the outer peripheral side of the flanged portions. The battery is such that the external terminals are secured in the through holes by making the flanged portions undergo plastic deformation by pressing and generating a sticking force between the external terminals and the through holes by the parts of the flanged portions that have undergone plastic deformation. The external terminals are provided with a first projection that is formed more to the outside of the case than the location receiving the sticking force due to the pressing of the flanged portion and protrudes to the outside in the radial direction from the outer peripheral surface of the external terminal.
Abstract:
A hermetically-sealed electrical feed-through device includes a conductor, an insulating sleeve, and an outer ferule interconnected in a manner preventing relative rotation therebetween and/or includes a thermocouple in direct contact with the conductor for monitoring temperature. The conductor can have a body section extending along an axis and having an outer contour including flats or an outwardly-extending eccentrically-shaped lobe. The sleeve confronts and covers the body section of the conductor and accommodates and engages the outer contour at the flats or lobe to prevent rotation of the conductor relative to the sleeve, and the outer ferrule sandwiches the insulating sleeve between the outer ferrule and the outer contour of the conductor. The outer ferrule accommodates and engages the sleeve adjacent the outer contour of the conductor at the flats or lobe to prevent rotation of the insulator sleeve relative to the outer ferrule.
Abstract:
A vehicular lead storage battery according to the present invention includes a battery container provided with at least one cell chamber; and a cover plate 1 for covering an upper opening of the battery container. A guide path 8 for discharging gases within a cell chamber to the outside is formed in the cover plate 1. The guide path 8 includes a first guide portion 9B for horizontally guiding gases from the cell chamber; a second guide portion 9C connected to the first guide portion 9B to downwardly guide the gases from the first guide portion 9B; and a third guide portion 10A connected to the second guide portion 9C to horizontally guide the gases from the second guide portion 9C and discharge the gases from an exhaust vent 4K formed in the cover plate 1 to the outside. A corner portion 9K is formed by the first guide portion 9B and the second guide portion 9C, and a corner portion 10K is formed by the second guide portion 9C and the third guide portion 10A. The guide path 8 is formed so that the angle θ of a straight line L having internal contact with the two corner portions 9K and 10K from a horizontal line is greater than the maximum angle of inclination at which the inclined angle of a vehicle is maximum during driving on a sloping ground.
Abstract:
A rechargeable battery includes an electrode group for producing electricity, a case for housing the electrode group, a cap plate combined with the case, an electrode terminal electrically coupled to the electrode group, and a fixing member disposed inside the case and combined to the support shaft portion. The electrode terminal includes a head portion disposed outside the case, and a support shaft portion protruding from the head portion and penetrating the cap plate. Contact resistance of the rechargeable battery can be reduced with this configuration. A battery module includes a plurality of rechargeable batteries and bus bars electrically connecting at least two of the rechargeable batteries, wherein each rechargeable battery includes a case with an internal space, a cap plate combined with the case, an electrode terminal including a head portion caught on the cap plate and a support shaft portion protruding from the head portion and penetrating the cap plate, and a fixing member disposed inside the case and combined to the support shaft portion.
Abstract:
A rechargeable battery including: an electrode assembly including a first electrode and a second electrode; a case containing the electrode assembly; a cap plate coupled to the case; a short-circuit tab electrically connected to the first electrode; and a short-circuit member electrically connected to the second electrode and configured to contact the short-circuit tab according to an increase of an internal pressure of the rechargeable battery, and the short-circuit member includes a connection portion having a plate shape, a support portion at an outer side of the connection portion, and a variable groove having a shape that is configured to change according to the increase of the internal pressure.