Abstract:
The purpose of the invention is to obtain a negative electrode for a large-capacity nonaqueous electrolyte rechargeable battery having good cycle characteristics. In the present invention, a negative electrode for a nonaqueous electrolyte rechargeable battery is used as a solution, said negative electrode being characterized by having an active material layer on a current collector, said active material layer containing at least granules, and one or more types of coating binder comprising any of a polyimide, polybenzimidazole, polyamide-imide and polyamide. The negative electrode is further characterized in that the granules contain at least active material particles containing: at least one type of element selected from a group comprising Si, Sn, Al, Pb, Sb, Bi, Ge, In and Zn; and a granulation binder.
Abstract:
Triethylboron is a useful precursor for depositing films in an atomic layer deposition process. This precursor is useful for depositing boron containing films. Boron containing films are excellent lubricating coatings for zinc powders, improving their flow properties and simplifying powder handling. This makes the coated zinc powders especially useful for battery applications in which a zinc powder is used as an anode material.
Abstract:
Disclosed is a positive active material for a rechargeable lithium battery and a rechargeable lithium battery including the same, and the positive active material includes a carbon material having a structure with “n” polycyclic nano sheets, wherein “n” is an integer of 1 to 30 with hexagonal rings having six carbon atoms condensed and substantially aligned in a plane, the polycyclic nano sheets are laminated in a vertical direction to the plane; and a lithium-containing olivine-based compound attached to the surface of the carbon material is formed with a carbon-coating layer on its surface.
Abstract:
The Invention provides a zinc-air cell comprising at least one zinc-incorporating structure, at least one oxygen evolving structure and at least one air electrode; wherein said zinc-air cell comprises a first pair of electrodes for the charging of said air cell, said electrode pair comprising said at least one zinc-incorporating structure and said at least one oxygen evolving structure; and wherein said zinc-air cell comprises a second pair of electrodes for the discharging of said air cell, said electrode pair comprising said at least one zinc-incorporating structure and said at least one air electrode.
Abstract:
An anode active material for a lithium secondary battery having a high capacity and a high efficiency of charge discharge characteristics. The anode active material includes a silicon mono-phase and an alloy phase formed of silicon with a metal element at least one selected from the group consisting of Ti, Ni, Cu, Fe, Mn, Al, Cr, Co, and Zn. The anode active material is a powder in which the silicon mono-phase is uniformly distributed in a matrix of the alloy phase, has particle size distribution defined as D0.1 and D0.9, and the value of D0.1-D0.9 is in a range from about 3 μm to about 15 μm.
Abstract:
[Problems to be Solved] Provided is a positive electrode material for an electrical device, which has high capacity and improved initial charge-discharge efficiency.[Means for Solving the Problem] Disclosed is a positive electrode material for an electrical device, which is represented by the formula (1): aLi[Li1/3Mn2/3]O2.(1−a)Li[NixCoyMn1-x-y]O2 (1) (wherein, 0
Abstract:
Thin-film electrodes and battery cells, and methods of fabrication. A thin film electrode may be fabricated from a non-metallic, non-conductive porous support structure having pores with micrometer-range diameters. The support may include a polymer film. A first surface of the support is metalized, and the pores are partially metallized to create metal tubes having a thickness within a range of 50 to 150 nanometers, in contact with the metal layer. An active material is disposed within metalized portions of the pores. An electrolyte is disposed within non-metalized portions of the pores. Active materials may be selected to create an anode and a cathode. Non-metalized surfaces of the anode and cathode may be contacted to one another to form a battery cell, with the non-metalized electrolyte-containing portions of the anode facing the electrolyte-containing portions of the cathode pores. A battery cell may be fabricated as, for example, a nickel-zinc battery cell.
Abstract:
A coin-type lithium secondary battery includes a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte. The negative electrode includes a negative electrode active material including a silicon alloy material, a conductive agent including a carbon material, and a binder. The silicon alloy material includes a phase A including a lithium-silicon alloy and a phase B including an intermetallic compound of a transition metal element and silicon. In the lithium-silicon alloy, a ratio of lithium atoms relative to silicon atoms is 2.75 to 3.65 in a 100% state-of-charge.
Abstract:
Provided are examples of electrochemically active electrode materials, electrodes using such materials, and methods of manufacturing such electrodes. Electrochemically active electrode materials may include a high surface area template containing a metal silicide and a layer of high capacity active material deposited over the template. The template may serve as a mechanical support for the active material and/or an electrical conductor between the active material and, for example, a substrate. Due to the high surface area of the template, even a thin layer of the active material can provide sufficient active material loading and corresponding battery capacity. As such, a thickness of the layer may be maintained below the fracture threshold of the active material used and preserve its structural integrity during battery cycling.
Abstract:
An alkaline primary battery includes: a positive electrode 2 containing manganese dioxide; an alkaline electrolyte containing zinc oxide; a gelled negative electrode 3 containing zinc alloy particles, the alkaline electrolyte, and a gelling agent; and a negative electrode current collector 6 inserted in the gelled negative electrode. The gelled negative electrode 3 has a predetermined malleability such that when 4.0 g of the gelled negative electrode 3 formed into a cylindrical shape with a diameter of 15 mm is extended with 200 g of a load through 10 g of a flat plate, and then an upper surface of the extended gelled negative electrode 3 is approximated to a circle, this circle has a diameter ranging from 24 mm to 36 mm, both inclusive.