Abstract:
A machine-implemented method can include receiving a common input signal over M parallel time-interleaved (TI) analog to digital converter (ADC) channels, determining a multiple-input, multiple-output finite impulse response (FIR) filter structure for correcting bandwidth mismatches between the M parallel TIADC channels, and providing a common output signal comprising TI data corresponding to the M parallel TIADC corrected channels.
Abstract:
A TD converter is provided for digitally converting a delay time value into a digital value. In the TD converter, an oscillator circuit part inputs time domain data. A first-state counter circuit part measures a number of waves of an output oscillation waveform from the oscillator circuit part when time domain data is in a first state, and a second-state counter circuit part measures a number of waves of the output oscillation waveform from the oscillator circuit part when the time domain data is in a second state. An output signal generator part generates an output signal based on output count values of the first-state counter circuit part and the second-state counter circuit part, and a frequency control circuit controls the oscillator circuit part to always oscillate and to control an oscillation frequency of the oscillator circuit part.
Abstract:
Disclosed is a time-to-digital (TDC) converter comprising an analog voltage source. An analog-to-digital converter quantizes two voltage samples in response to receiving a first input signal at a first time t1 and a second input signal at a second time t2. The first and second digital signals are combined to produce a digital signal that represents the difference (t2−t1).
Abstract:
The discrete time analog circuit (100) is provided with: a rotate capacitor circuit (150); an amplifier (141) that is connected to the input line or the output line of the rotate capacitor (150), and amplifies the input potential or input charge; a coefficient circuit (140) that is positioned in series with the amplifier (141), and has two history capacitors (143-1, 143-2) positioned parallel to each other; a first active capacitor among the two history capacitors (143-1, 143-2) that is connected to and charges the amplifier (141); and a clock generation circuit (110) that is connected to the input line or the output line without the involvement of the amplifier (141), and that sequentially changes the pairing of the rotate capacitor circuit (150) a second active capacitor, which shares a charge with the rotate capacitor circuit (150).
Abstract:
Provided is a time-domain voltage comparator including a voltage-time converter. The voltage-time converter includes a conversion unit and an output unit. The conversion unit includes a first MOS transistor which shifts a voltage level of the first detection node according to an external first voltage signal, and a second MOS transistor which shifts a voltage level of the second detection node according to an external second voltage signal. The output unit generates first and second output signals in response to voltages of the first and second detection nodes. The output unit determines a shifted time of the first output signal according to a voltage level of the first detection node and determines a shifted time of the second output signal according to a voltage level of the second detection node.
Abstract:
Provided are a distance measuring device using an impulse signal and a receiving device thereof. The distance measuring device includes: a transmitting device transmitting an impulse signal; and a receiving device receiving the impulse signal and measuring a time interval (hereinafter, referred to as a delay time) between a transmitting timing and a receiving timing of the impulse signal, wherein the receiving device measures the delay time through a Time to Digital Converter (TDC) technique. According to the present invention, the distance measuring device measures the distance accurately and speedly.
Abstract:
A method for converting an analog signal to a digital signal is provided. Initially, a digital representation of a portion of an analog signal is generated. Residue of the analog signal is then sampled at a sampling instant so as to generate a residue sample. A signal having a frequency that is proportional to the voltage of the residue sample is generated, and the signal is measured to generate coarse and fine measurements of the frequency. A digital representation of the residue sample from the coarse and fine measurements is then generated.
Abstract:
Processing a signal by receiving an analog input signal located outside of a first Nyquist zone that is between 0 and fs/2; passing the analog input signal through an M-channel time-interleaved analog-to-digital converter (TI-ADC) to generate a TI-ADC output signal; and estimating and correcting a timing skew error in the TI-ADC output signal. Alternatively, an electronic circuit that includes an input for an analog input signal, an M-channel time-interleaved analog-to-digital converter (TI-ADC) and a timing skew error estimating and correcting circuitry. The analog input signal is located outside of a first Nyquist zone that is between 0 and fs/2. The TI-ADC receives the analog input signal and generates a TI-ADC output signal. The timing skew error estimating and correcting circuitry estimates and corrects a timing skew error in the TI-ADC output signal.
Abstract:
An analog-to-digital converter may include an annular delay circuit that includes a plurality of delay units connected in an annular shape, each of the plurality of delay units delaying a pulse current that is input to each of the plurality of delay units, a current source that outputs an electric current, in accordance with an input analog signal, to selected delay units, which is selected from among the plurality of delay units, and a digital signal generation unit that generates a digital signal in accordance with a number of circulations per predetermined period of time of the pulse current circulating around the annular delay circuit.
Abstract:
The invention relates to the conversion into digital information of the time difference between a first signal and a second signal. In particular, in order to determine a fractional part of the number of periods of a first signal for a period of a second signal, the following are alternately performed: /1/ delaying the second signal relative to the first signal and determining a first digital information item, a function of the fractional part, /2/ delaying the first signal relative to the second signal and determining a second digital information item, a function of the fractional part. Then the fractional part is calculated as a function of the previously obtained first and second digital information items.