Abstract:
An infrastructure is provided for gathering diagnostic data that is relevant to an error or other conditions detected in a monitored system. A diagnosability framework is provided that automates the gathering of relevant diagnostic data upon occurrence of the condition in the monitored system. In one embodiment, context data is determined for the condition detected in the monitored system. A rule-based engine is provided that is configured to automatically determine one or more actions to be performed for the condition detected in the monitored system based on the determined context data. The actions may include performing tasks that gather diagnostic data that is relevant to the detected condition, store the gathered diagnostic data in a repository, recommend one or more diagnostic actions to a user, and other diagnostic related actions.
Abstract:
Techniques for intelligently identifying diagnostic data to be communicated from a product or system site (e.g., a customer site) to a diagnosis site (e.g., a vendor site). An appropriate amount of diagnostic data is identified to facilitate efficient and quick diagnosis and error resolution. Techniques are also provided that enable a customer to review the data identified for transmission to the diagnosis site prior to the transmission.
Abstract:
A diagnosability system for automatically collecting, storing, communicating, and analyzing diagnostic data for one or more monitored systems. The diagnosability system comprises several components configured for the collection, storage, communication, and analysis of diagnostic data for a condition detected in monitored system. The diagnosability system enables targeted dumping of diagnostic data so that only diagnostic data that is relevant for diagnosing the condition detected in the monitored system is collected and stored. This in turn enables first failure analysis thereby reducing the time needed to resolve the condition detected in the monitored system.
Abstract:
An infrastructure is provided for gathering diagnostic data that is relevant to an error or other conditions detected in a monitored system. A diagnosability framework is provided that automates the gathering of relevant diagnostic data upon occurrence of the condition in the monitored system. In one embodiment, context data is determined for the condition detected in the monitored system. A rule-based engine is provided that is configured to automatically determine one or more actions to be performed for the condition detected in the monitored system based on the determined context data. The actions may include performing tasks that gather diagnostic data that is relevant to the detected condition, store the gathered diagnostic data in a repository, recommend one or more diagnostic actions to a user, and other diagnostic related actions.
Abstract:
Methods and apparatus for effectively identifying the occlusion of objects, such as persons, having a high degree of freedom. In an example embodiment, after initialization, an image is input, and an image region is extracted from image data. The distance is employed that is obtained when the shape of a two-dimensional histogram in the color space is transformed into the feature space. A graph is formed by using the regions between the frames. A confidence factor is provided and image features are provided as weights to the edges that connect the nodes. Processing is performed and the confidence factor is examined. A connection judged less possible to be a path is removed. When there is only one available connection for the occlusion point, this connection is selected.
Abstract:
A railroad locomotive includes a naturally-aspirated reciprocating internal combustion engine, and a traction generator driven by the engine. A throttle position sensor produces a signal corresponding to the throttle position selected by the locomotive's operator. A load regulator receives a speed signal derived from the throttle position signal and outputs an excitation signal for the traction generator which is modified by a controller in response to air availability so that engine speed and load are controlled independently of the selected throttle position, so as to limit the exhaust smoke output of the engine.
Abstract:
A method and system for rapidly shutting down an engine uses a rotating machine coupled to the engine as a dynamometer for stopping the engine. The rotating machine is controlled adaptively to maximize the power absorbed from the engine, thereby minimizing the amount of time needed to stop the engine.
Abstract:
A locomotive (10) is operable in two or more distinct configurations, with the change in configuration being response to a configuration input signal (35). A locomotive configuration is represented by the set of end use device control signals (13) that are generated by the locomotive control systems (22) in response to the respective set of operational input values (27). For a given set of operational input values, a first set of end use device control signals is generated when a configuration input has a first value, and a second set of end use device control signals is generated when a configuration input has a second value. The configuration input variable may be responsive to the locomotive location, a wayside device signal, an operator action or the health of the locomotive, for example. Locomotive configuration changes may include peak horsepower rating, number of engine cylinders fueled, number of throttle notch settings, adhesion limits, mission priorities or emission profile, for example.
Abstract:
A control system for operating a diesel powered system having at least one diesel-fueled power generating unit, the system including a mission optimizer that determines at least one setting be used by the diesel-fueled power generating unit, a converter that receives at least one of information that is to be used by the diesel-fueled power generating unit and converts the information to an acceptable signal a sensor to collect at least one operational data from the diesel powered system that is communicated to the mission optimizer, and a communication system that provides for a closed control loop between the mission optimizer, converter, and sensor.
Abstract:
An energy management system is provided for use with a hybrid energy off-highway vehicle traveling on a predetermined course. The energy management system includes an energy management processor to determine a power storage parameter, a power transfer parameter, and an engine transfer parameter for each location along the predetermined course to minimize the total fuel consumed of all fuel types during the predetermined course subject to at least one fuel parameter constraint. An energy storage system selectively stores electrical energy available from the traction bus as a function of the power storage parameter and selectively supplies secondary electric power from the stored electrical energy to the traction bus as a function of the power transfer parameter. The engine selectively supplies primary electric power to the traction bus at each location along said predetermined course through selectively using at least one fuel type in response to said engine transfer parameter.