摘要:
Oxide thin film, electronic devices including the oxide thin film and methods of manufacturing the oxide thin film, the methods including (A) applying an oxide precursor solution comprising at least one of zinc (Zn), indium (In) and tin (Sn) on a substrate, (B) heat-treating the oxide precursor solution to form an oxide layer, and (C) repeating the steps (A) and (B) to form a plurality of the oxide layers.
摘要:
A TFT includes a zinc oxide (ZnO)-based channel layer having a plurality of semiconductor layers. An uppermost of the plurality of semiconductor layers has a Zn concentration less than that of a lower semiconductor layer to suppress an oxygen vacancy due to plasma. The uppermost semiconductor layer of the channel layer also has a tin (Sn) oxide, a chloride, a fluoride, or the like, which has a relatively stable bonding energy against plasma. The uppermost semiconductor layer is relatively strong against plasma shock and less decomposed when being exposed to plasma, thereby suppressing an increase in carrier concentration.
摘要:
A ZnO-based thin film transistor (TFT) is provided herein, as is a method of manufacturing the TFT. The ZnO-based TFT has a channel layer that comprises ZnO and ZnCl, wherein the ZnCl has a higher bonding energy than ZnO with respect to plasma. The ZnCl is formed through the entire channel layer, and specifically is formed in a region near the surface of the channel layer. Since the ZnCl is strong enough not to be decomposed when exposed to plasma etching gas, an increase in the carrier concentration can be prevented. The distribution of ZnCl in the channel layer, may result from the inclusion of chlorine (Cl) in the plasma gas during the patterning of the channel layer.
摘要:
A method of distributing encryption keys among nodes in a mobile ad hoc network, and a network device using the same. In particular, a method of distributing encryption keys, which guarantees the security of a ciphertext in the mobile ad hoc network. The method of distributing the encryption keys among nodes including a first node and a second node in the mobile ad hoc network include creating a private key and a public key based on a first encryption method by the first node; if the first node transmits the created public key to Node B, creating predetermined parameters operable to create a common key according to a second encryption method by the second node.
摘要:
A transistor includes; at least two polycrystalline silicon layers disposed substantially parallel to each other, each polycrystalline silicon layer including a channel region and at least two high conductivity regions disposed at opposing sides of the channel region; a gate which corresponds to the channel region of the two polycrystalline silicon layers and which crosses the two polycrystalline silicon layers, and a gate insulating layer interposed between the gate and the two polycrystalline silicon layers, wherein low conductivity regions are disposed adjacent to one edge of the gate and are formed between the channel region and one high conductivity region of each polycrystalline silicon layer.
摘要:
A thin film transistor (TFT) and a method of manufacturing the same are provided, the TFT including a gate insulating layer on a gate. A channel may be formed on a portion of the gate insulating layer corresponding to the gate. A metal material may be formed on a surface of the channel. The metal material crystallizes the channel. A source and a drain may contact side surfaces of the channel.
摘要:
Disclosed is a thin film transistor (TFT). The TFT may include an intermediate layer between a channel and a source and drain. An increased off current, which may occur to a drain area of the TFT, is reduced due to the intermediate layer. Accordingly, the TFT may be stably driven.
摘要:
Provided are methods of forming a more highly-oriented silicon thin layer having a larger grain size, and a substrate having the same. The methods may include forming an aluminum (Al) layer on a base substrate, forming a more highly-oriented Al layer by recrystallizing the Al layer under vacuum, forming a more highly-oriented γ-Al2O3 layer on the more highly-oriented Al layer and/or epitaxially growing a silicon layer on the more highly-oriented γ-Al2O3 layer. The method may be used to manufacture a semiconductor device having higher carrier mobility.
摘要翻译:提供了形成具有较大晶粒尺寸的更高取向硅薄层的方法以及具有其的基板。 所述方法可以包括在基底上形成铝(Al)层,通过在真空下重结晶Al层形成更高取向的Al层,在更高取向的Al层上形成更高取向的γ-Al 2 O 3层 和/或在更高取向的γ-Al 2 O 3层上外延生长硅层。 该方法可用于制造具有较高载流子迁移率的半导体器件。
摘要:
Provided are an electronic device and a method of manufacturing the same. The device includes a plastic substrate, a transparent thermal conductive layer stacked on the plastic substrate, a polysilicon layer stacked on the thermal conductive layer; and a functional device disposed on the polysilicon layer. The functional device is any one of a transistor, a light emitting device, and a memory device. The functional device may be a thin film transistor including a gate stack stacked on the polysilicon layer.
摘要:
A ZnO-based thin film transistor (TFT) is provided herein. Also provided is a method for manufacturing the TFT. The ZnO-based TFT is very sensitive to the oxygen concentration present in a channel layer. In order to prevent damage to a channel layer of a bottom gate TFT, and to avoid a deep negative threshold voltage resulting from damage to the channel layer, the method for manufacturing the ZnO-based TFT comprises formation of an etch stop layer or a passivation layer comprising unstable or incompletely bonded oxygen, and annealing the layers to induce an interfacial reaction between the oxide layer and the channel layer and to reduce the carrier concentration.