Abstract:
A corona-resistant resin composition and a corona-resistant member, having sufficient durability relative to corona discharge, are provided. A corona-resistant resin composition obtained, at least, by melt kneading 7 to 80 parts by mass of a silicone-based polymer per 100 parts by mass of a resin component, and a corona-resistant member formed by molding the corona-resistant resin composition, are disclosed. A polyarylene sulfide resin or a polybutylene terephthalate resin may be used as the resin component.
Abstract:
A polyoxymethylene (POM) resin composition which is used for a resin molded article having an excellent sliding characteristic and wear resistance property and also having an excellent surface property and peeling resistance property. This POM resin composition contains: (A) 100 parts by mass of a POM resin; (B) 0.01-1 parts by mass of a hindered phenolic antioxidant; (C) 0.05-1 parts by mass inclusive of a nitrogen-containing compound; (D) 0.5-10 parts by mass of a modified olefin polymer which is an olefin polymer that has been modified by an unsaturated carboxylic acid or the like; (E) 0.01-5 parts by mass of an alkylene glycol polymer that has a primary or secondary amino group and a number average molecular weight of 400-500,000; (F) 0.1-20 parts by mass of calcium carbonate which has a BET specific surface area of 15 m2/g or less, has a mean particle size of 50-200 nm or less, is surface-untreated, and is substantially cubic; (G) 0.1-10 parts by mass of a partial ester of a divalent to tetravalent alcohol; and (H) 0.1-10 parts by mass of an α-olefin oligomer.
Abstract:
A polyarylene sulfide-derived resin composition which has flowability optimal for insert molding and which can impart superior high- and low-temperature impact properties to a molded body, and an insert-molded body using the resin composition. The resin composition includes a polyarylene sulfide resin having carboxylic terminal groups, an olefin-derived copolymer, glass fibers and calcium carbonate. The weight-average molecular weight of the polyarylene sulfide resin is 15,000-40,000; as copolymerization components, the olefin-derived copolymer includes α-olefins, glycidyl esters of α,β-unsaturated acids, and acrylic esters, and the content of the copolymerization component derived from the glycidyl esters in the resin composition is 0.2-0.6 mass %. Further, the fiber diameter of the glass fibers is 9-13 μm, the average particle diameter of the calcium carbonate is 10-50 μm, and the total content of glass fibers and the calcium carbonate is 45-55 mass % of the resin composition.
Abstract:
A process for producing a polyacetal copolymer, the process making catalyst deactivation easy and efficient. Trioxane as a major monomer is copolymerized with one or more comonomers that are a cyclic ether and/or cyclic formal having at least one carbon-carbon bond, using a nonvolatile protonic acid as a polymerization catalyst at 100° C. or lower until the conversion reaches 50% and thereafter at a polymerization environment temperature of 115° C. to 140° C. This process includes: a crushing step in which a dry-process crusher is used to obtain a crude polyacetal copolymer crushed to such a degree that when the crude copolymer is screened with a sieve having an opening size of 11.2 mm, 90 parts by weight or more thereof passes therethrough; and a deactivation step in which a basic compound (e) is added to the crude copolymer and the mixture is melt-kneaded to thereby deactivate the polymerization catalyst.
Abstract:
A high-quality polyacetal copolymer produced by a simple process in an economical manner. The process includes supplying a raw material including trioxane and the like to a reaction device; setting the polymerization environmental temperature to no more than 100° C. until the reaction device conversion rate becomes 0.5, and then carrying out further polymerization; vaporizing and separating unreacted monomers from the reaction mixture at an environmental temperature of at least 115° C. and less than 140° C.; supplying the separated monomers to the raw material supply; and recovering the polyacetal copolymer from the reaction mixture.
Abstract:
A corona-resistant resin composition and a corona-resistant member, having sufficient durability relative to corona discharge, are provided. A corona-resistant resin composition obtained, at least, by melt kneading 7 to 80 parts by mass of a silicone-based polymer per 100 parts by mass of a resin component, and a corona-resistant member formed by molding the corona-resistant resin composition, are disclosed. A polyarylene sulfide resin or a polybutylene terephthalate resin may be used as the resin component.
Abstract:
A polyacetal resin composition makes it possible, when formed into a molded article, to minimize deterioration during contact with sulfur-containing fuel or an acidic detergent. The polyacetal resin composition contains (A) 100 parts by weight of polyacetal resin, (B) 0.1-1.0 parts by weight of hindered phenolic antioxidant, (C) 0.1-2.0 parts by weight of alkaline earth metal oxide, (D) 0.5-3.0 parts by weight of polyalkylene glycol, and (E) 0.01-1.0 parts by weight of polyvalent fatty acid full ester. This polyacetal resin composition minimizes reductions in the weight of a molded article even after the molded article has been immersed in sulfur-containing fuel.
Abstract:
Provided is a thermosetting composition that can be cured at a relatively low temperature and gives a cured product having excellent heat resistance.The thermosetting composition according to the present invention is a thermosetting liquid-crystal polyester composition prepared by melt-blending a liquid-crystal polyester (A) and a compound (B) with each other. The liquid-crystal polyester (A) includes at least one of hydroxy and acyloxy at molecular chain end. The compound (B) includes a first functional group and a second functional group in molecule. The first functional group is reactive with the at least one of hydroxy and acyloxy. The second functional group is thermally polymerizable. In the thermosetting liquid-crystal polyester composition, the liquid-crystal polyester (A) is preferably a liquid-crystal polyester that contains a monomer unit derived from an aromatic compound and has an average degree of polymerization of from 3 to 30 and a melting point of 250° C. or lower.
Abstract:
The present invention provides a highly heat-resistant multi-layer molded article having excellent adhesion between layers and which can be inexpensively produced and easily recycled. The multi-layer molded article comprises an innermost layer including a first polyarylene sulfide-derived resin composition having 95% to 91% by mass of a polyarylene sulfide-derived resin and 5% to 9% by mass of an olefinic (olefine-derived) elastomer, and an outer layer disposed on an outer-side of the innermost layer, including a second polyarylene sulfide-derived resin composition having 5 to 35 parts by mass of reinforced fibers and 100 parts by mass of a third polyarylene sulfide-derived resin composition having 95% to 80% by mass of a polyarylene sulfide-derived resin and 5% to 20% by mass of an olefinic elastomer.
Abstract:
The invention provides a method for producing a thermotropic liquid crystalline polymer of high quality at high yield and in short polymerization time, which method includes polymerizing staring monomers I, II, III, and IV, i.e., (I) an aromatic hydroxycarboxylic acid, etc.; (II) an aromatic dicarboxylic acid and an alicyclic dicarboxylic acid; (III) an aromatic diol, an alicyclic diol, an aliphatic diol, etc.; and (IV) an aromatic hydroxylamine, an aromatic diamine, etc. in the presence of an acylating agent, wherein the starting materials are charged so as to satisfy the following equations (1) to (4):0.0015null((A)null(B))/((A)null(B))null0.006nullnull(1);1.01null(D)/(C)null1.08nullnull(2);0null(E)null40nullnull(3);and(D)/(C)nullnull0.002null(E)null1.04nullnull(4),wherein (A) denotes the total amount by equivalent (with respect to a carboxyl group) of starting monomers I and/or II; (B) denotes the total amount by equivalent (with respect to a hydroxyl group, an amino group, an ester derivative group thereof, and an amide derivative group thereof) of starting monomers I, III, and/or IV; (C) denotes the total amount by equivalent (with respect to a hydroxyl group and an amino group) of starting monomers I, III, and/or IV; (D) denotes the amount by equivalent of an acylating agent; and (E) denotes the amount of a catalyst (as reduced to amount by weight of metal, unit: ppm).