Abstract:
A display substrate includes a first light blocking pattern formed on a base substrate, a first switching element, a second light blocking pattern formed on the base substrate, and a first sensing element. The first light blocking pattern is configured to block visible light and transmit infrared light. The first switching element includes a first semiconductor pattern, a first source electrode, a first drain electrode, and a first gate electrode. The second light blocking pattern is configured to block the visible light and transmit the infrared light. The first sensing element is configured to detect the infrared light, and includes a second semiconductor pattern, a second source electrode, a second drain electrode, and a second gate electrode.
Abstract:
A photomask includes; a source electrode pattern including; a first electrode portion which extends in a first direction, a second electrode portion which extends in the first direction and is substantially parallel to the first electrode portion, and a third electrode portion which extends from a first end of the first electrode portion to a first end of the second electrode portion and is rounded with a first curvature, a drain electrode pattern which extends in the first direction and is disposed between the first electrode portion and the second electrode portion, wherein an end of the drain electrode pattern is rounded to correspond to the third electrode portion; and a channel region pattern which is disposed between the source electrode pattern and the drain electrode pattern, wherein a center location of the first curvature and a center location of the rounded portion of the end of the drain electrode pattern are the same.
Abstract:
A touch screen substrate includes a base substrate, a first switching element and a first sensing element which senses infrared light. The first switching element includes a first switching gate electrode, a first active pattern disposed on the first switching gate electrode, a first switching source electrode disposed on the first active pattern and a first switching drain electrode disposed apart from the first switching source electrode. The first sensing element includes a first sensing drain electrode connected to the first switching source electrode, a first sensing source electrode disposed apart from the first sensing drain electrode, a second active pattern disposed below the first sensing drain electrode and the first sensing source electrode and including a first amorphous layer, a doped amorphous layer and a second amorphous layer, and a first sensing gate electrode disposed on the first sensing drain electrode and the first sensing source electrode.
Abstract:
A manufacturing method for a flat panel display device includes forming a barrier layer on a flexible plastic substrate by RF sputtering, forming an amorphous silicon layer on the plastic substrate, and subjecting the amorphous silicon layer to a rapid heat treatment so as to thereby improve electrical characteristics and/or homogeneity of the amorphous silicon layer.
Abstract:
A manufacturing method of a thin film transistor (TFT) includes forming a gate electrode including a metal that can be combined with silicon to form silicide on a substrate and forming a gate insulation layer by supplying a gas which includes silicon to the gate electrode at a temperature below about 280° C. The method further includes forming a semiconductor on the gate insulation layer, forming a data line and a drain electrode on the semiconductor and forming a pixel electrode connected to the drain electrode.
Abstract:
A display device includes a lower panel including a lower substrate and a pixel transistor formed on the lower substrate; and an upper panel facing the lower panel, and including an upper substrate, a sensing transistor formed on the upper substrate, and a readout transistor connected to the sensing transistor and transmitting a signal. The readout transistor includes a first lower gate electrode formed on the upper substrate, a first semiconductor layer formed on the first lower gate electrode and overlaps the first gate electrode, and a first source electrode and a first drain electrode disposed on the first semiconductor layer. The sensing transistor includes a light blocking film disposed on the upper substrate, a second lower gate electrode contacting the light blocking film on the light blocking film, a second semiconductor layer overlapping the light blocking film on the second lower gate electrode, a second source electrode and a second drain electrode formed on the second semiconductor layer, and a second upper gate electrode overlapping the second semiconductor layer on the second source electrode and the second drain electrode.
Abstract:
In a sensing device and a method for sending a light by using the same, the sensing device includes: a lower panel; an upper panel facing the lower panel; a liquid crystal layer disposed between the lower panel and the upper panel; an infrared ray sensor formed in at least one of the lower panel and the upper panel; and a visible ray sensor formed in at least one of the lower panel and the upper panel. The sensing device simultaneously includes the infrared ray sensor and the visible ray sensor such that a touch sensing function or an image sensing function having high reliability may be realized.
Abstract:
A display panel that includes: a substrate, a sensing transistor disposed on the substrate, and a readout transistor connected to the sensing transistor and transmitting a detecting signal is presented. The sensing transistor includes a semiconductor layer disposed on the upper substrate, a source electrode and a drain electrode disposed on the semiconductor layer, and a gate electrode overlapping the semiconductor layer on the source electrode and the drain electrode. Accordingly, in a display device and a manufacturing method thereof, an infrared sensing transistor, a visible light sensing transistor, and a readout transistor are simultaneously formed with a top gate structure such that the number of manufacturing processes and the manufacturing cost may be reduced.
Abstract:
A fan-out unit which can control a resistance difference among channels with efficient space utilization and a thin-film transistor (TFT) array substrate having the fan-out unit are presented. The fan-out unit includes: an insulating substrate; a first wiring layer which is formed on the insulating substrate and connected to a pad; a second wiring layer which is formed on the insulating substrate and connected to a TFT; and a resistance controller which is connected between the first wiring layer and the second wiring layer and includes a plurality of first resistors extending parallel to the first wiring layer and a plurality of second resistors extending perpendicular to the first resistors and alternately connecting to the first resistors, wherein the first resistors are longer than the second resistors.
Abstract:
A liquid crystal display includes; a first substrate, a gate line and a data line disposed on the first substrate, a color filter including protrusions and depressions aligned with the data line, the color filter being disposed on the data line, a pixel electrode disposed on the color filter, a second substrate facing the first substrate, a common electrode disposed on the second substrate, and a liquid crystal layer interposed between the first substrate and the second substrate.