Abstract:
A method of forming an active region structure includes preparing a semiconductor substrate having a cell array region and a peripheral circuit region, forming upper cell mask patterns having a line shape in the cell array region, forming first and second peripheral mask patterns in the peripheral circuit region, the first and second peripheral mask patterns being stacked in sequence and covering the peripheral circuit region, and upper surfaces of the upper cell mask patterns forming a step difference with an upper surface of the second peripheral mask pattern, forming spacers on sidewalls of the upper cell mask patterns to expose lower portions of the upper cell mask patterns and the second peripheral mask pattern, and removing the lower portions of the upper cell mask patterns using the spacers and the first and second peripheral mask patterns as an etch mask.
Abstract:
A semiconductor device may include plugs disposed in a zigzag pattern, interconnections electrically connected to the plugs and a protection pattern which is interposed between the plugs and the interconnections to selectively expose the plugs. The interconnections may include a connection portion which is in contact with plugs selectively exposed by the protection pattern. A method of manufacturing a semiconductor device includes, after forming a molding pattern and a mask pattern, selectively etching a protection layer using the mask pattern to form a protection pattern exposing a plug.
Abstract:
A semiconductor device may include plugs disposed in a zigzag pattern, interconnections electrically connected to the plugs and a protection pattern which is interposed between the plugs and the interconnections to selectively expose the plugs. The interconnections may include a connection portion which is in contact with plugs selectively exposed by the protection pattern. A method of manufacturing a semiconductor device includes, after forming a molding pattern and a mask pattern, selectively etching a protection layer using the mask pattern to form a protection pattern exposing a plug.
Abstract:
A method for fabricating a semiconductor device includes forming a first conductive layer doped with an impurity for forming a cell junction over a semiconductor substrate, forming a second conductive layer over the first conductive layer, forming a plurality of active regions by etching the second conductive layer and the first conductive layer, the plurality of the active regions being separated from one another by trenches, forming a side contact connected to a sidewall of the first conductive layer, and forming a plurality of metal bit lines each connected to the side contact and filling a portion of each trench.
Abstract:
A power amplifier module comprises a power amplifier disposed in a coreless substrate and a directional coupler disposed in a coreless substrate and connected to the power amplifier.
Abstract:
An intermediate end plug assembly for a segmented fuel rod can stably support the fuel rod to the end of its cycle even if an interval between the fuel rods becomes narrow due to application of a dual-cooled fuel rod, and reduce excess vibration induced by flows of interior and exterior channels of the dual-cooled fuel rod for obtaining high burnup and output. To this end, the fuel rod has a segmented structure so as to make its length short. A lower intermediate end plug includes at least one channel hole, through which a coolant flows into an internal channel of the fuel rod, so that a possibility of causing departure from nuclear boiling ratio (DNBR) of the dual-cooled fuel rod is reduced.
Abstract:
A method of fabricating an integrated circuit device includes forming first and second mask structures on respective first and second regions of a feature layer. Each of the first and second mask structures includes a dual mask pattern and an etch mask pattern thereon having an etch selectivity relative to the dual mask pattern. The etch mask patterns of the first and second mask structures are isotropically etched to remove the etch mask pattern from the first mask structure while maintaining at least a portion of the etch mask pattern on the second mask structure. Spacers are formed on opposing sidewalls of the first and second mask structures. The first mask structure is selectively removed from between the spacers in the first region using the portion of the etch mask pattern on the second mask structure as a mask to define a first mask pattern including the opposing sidewall spacers with a void therebetween in the first region, and a second mask pattern including the opposing sidewall spacers with the second mask structure therebetween in the second region. The feature layer may be patterned using the first mask pattern as a mask to define a first feature on the first region, and using the second mask pattern as a mask to define a second feature on the second region having a greater width than the first feature.
Abstract:
A backlight assembly includes a lamp socket unit, a printed circuit board and a lower receiving container. The printed circuit board includes a cutout portion which receives the lamp socket unit therethrough. The lower receiving container receives the lamp socket unit and the printed circuit board. The lamp socket unit is coupled to the printed circuit board, and the printed circuit board, having the lamp socket unit coupled thereto, is disposed in the lower receiving container.
Abstract:
Disclosed are a contact plug of a semiconductor device and a method for fabricating the same. The semiconductor device includes: an epitaxial stack formed by inserting a heteroepitaxy layer between a pair of homoepitaxy layers; and a contact plug including a metal layer on the epitaxial stack. Accordingly, in accordance with the present invention, the contact plug is selectively doped in a high concentration, thereby reducing a contact resistance. Furthermore, the present invention also provides an effect of reducing degradation in a device property without decreasing yields of products by minimizing a thermal budget through using a SEG-silicon germanium layer capable of obtaining a high doping concentration and a high deposition speed.
Abstract:
A memory module, includes a memory module board and a plurality of memory devices on the memory module board. The memory module board includes one or more first input terminals configured to receive first signals to individually control the memory devices, and one or more second input terminals configured to receive second signals to commonly control the memory devices. Each of the memory devices includes a plurality of first signal input units configured to receive the first signals through one or more first input pins, a plurality of second signal input units configured to receive the second signals through one or more second input pins, and a plurality of dummy units, the dummy units being respectively connected to the first signal input units in parallel, and being configured to receive the first signals through one or more third input pins and to compensate for a signal line load.