Abstract:
A near-field coupling device that may facilitate communications with a transponder is provided. The near-field coupling device may include a ground plane, a dielectric substrate, one or more conductive strips and a terminating load. The conductive strips together with the ground planes form coupling elements. The near-field coupling device further includes one or more switching elements for selectively connecting and disconnecting the coupling elements with a transceiver. The connected coupling elements define a total characteristic impedance. Using the switching element, the ratio between the total characteristic impedance of the connected coupling elements and the terminating load may be changed in order to adjust the distribution of an electromagnetic field along the coupling elements according to the type and position of the transponder to be processed.
Abstract:
Media cutting assemblies are disclosed. An example media cutting assembly includes a stationary surface extending along a plane; a circular blade to traverse the stationary surface along the plane, a portion of the circular blade being in contact with the stationary surface; and a guide to direct media along a path that interests the plane, wherein the guide extends toward the plane at a non-perpendicular angle relative to the plane.
Abstract:
Provided herein is a media processing device including a printhead assembly, a frame, and a biasing element. The printhead assembly includes a printhead and a printhead bracket, where the printhead assembly extends in a longitudinal direction between a first end and a second end, and where the printhead bracket includes a biasing force receiving element. The frame may be configured to receive and support the printhead assembly, where the frame includes a first portion disposed adjacent to the first end of the printhead assembly, and a second frame portion is disposed adjacent to the second end of the printhead assembly. The biasing element may extend between the first frame portion and the second frame portion, where the biasing element may engage the biasing force receiving element of the printhead assembly.
Abstract:
Systems, methods, apparatuses, and computer readable media are disclosed for determining events and outputting events based on real-time data for location and movement of objects and audio data. In one embodiment, a method is provided for a method of determining play events that at least includes receiving audio data, wherein the audio data is received from at least one of a memory or a sensor; determining an event probability based on comparing the audio data to an audio profile; and generating an event based on the event probability satisfying a predetermined threshold.
Abstract:
Methods and apparatus to adapt legacy applications to target platforms are disclosed. An example method includes generating a platform-agnostic representation of a first platform-specific application, the first platform-specific application being specific to a first mobile platform, the platform-agnostic representation of the first platform-specific application conforming to a first API of the first mobile platform; and adapting the platform-agnostic representation of the first platform-specific application to be platform-specific to a second mobile platform different than the first mobile platform.
Abstract:
A modular print drive assembly and platen assembly are provided. The modular print drive assembly is structured for insertion and removal from a printer, the modular print drive assembly and includes a print drive housing defining a plurality of printer mount fasteners, a printhead coupled to and supported by the print drive housing, a platen latch assembly coupled to and supported by the print drive housing. The platen latch assembly is structured to removably receive a platen in position to define a nip between the platen and the printhead The modular print drive also includes a platen drive motor coupled to and supported by the print housing, wherein the platen drive motor is supported by the print housing in position to drive the platen upon receipt within the platen latch assembly.
Abstract:
Systems and related methods providing for determining activities of individuals are discussed herein. Circuitry may be configured to wirelessly receive tag signals from a plurality of RF location tags. Two or more of the RF location tags may be positioned on an individual, such as at positions that may at least partially define a human frame. The circuitry may be configured to correlate the two or more RF location tags with the individual. Location data for each of the two or more RF location tags may be determined based on the received tag signals. An activity of the individual may be determined based on the location data. In some embodiments, one or more activities involving multiple individuals may be determined based on RF location tags and sensors positioned on each of the multiple individuals. Furthermore, sensor data from the sensors may be communicated over the UWB channel.
Abstract:
An example disclosed method includes querying, via a logic circuit, a media processing device memory for files that can be stored to a USB storage device, the USB storage device being connected to a USB Host port of the media processing device; receiving a selection of one of the files to be stored to the USB storage device; determining, via the logic circuit, if the selected one of the files is a particular type of file, and if the selected one of the files is the particular type of file, converting the selected one of the files from a first representation to a second representation; and storing the selected one of the files in the second representation to the USB storage device.
Abstract:
A modular print drive assembly and platen assembly are provided. The modular print drive assembly is structured for insertion and removal from a printer, the modular print drive assembly and includes a print drive housing defining a plurality of printer mount fasteners, a printhead coupled to and supported by the print drive housing, a platen latch assembly coupled to and supported by the print drive housing. The platen latch assembly is structured to removably receive a platen in position to define a nip between the platen and the printhead The modular print drive also includes a platen drive motor coupled to and supported by the print housing, wherein the platen drive motor is supported by the print housing in position to drive the platen upon receipt within the platen latch assembly.