Abstract:
In fabrication of an integrated circuit having a layer with a plurality of conductive interconnects, a layer of a substrate is polished to provide the layer of the integrated circuit. The layer of the substrate includes conductive lines to provide the conductive interconnects. The layer of the substrate includes a closed conductive loop formed of a conductive material in a trench. A depth of the conductive material in the trench is monitored using an inductive monitoring system and a signal is generated. Monitoring includes generating a magnetic field that intermittently passes through the closed conductive loop. A sequence of values over time is extracted from the signal, the sequence of values representing the depth of the conductive material over time.
Abstract:
A measured characterizing value dependent on a thickness of a region of a substrate is input into a first predictive filter. The first predictive filter generates a filtered characterizing value. A measured characterizing rate at which the measured characterizing value changes is input into a second predictive filter. The second predictive filter generates a filtered characterizing rate of the region of the substrate. The measured characterizing value and the measured characterizing rate are determined based on in-situ measurements made at or before a first time during a polishing process of the substrate. A desired characterizing rate is determined to be used for polishing the region of the substrate after the first time and before a second, later time based on the filtered characterizing value and the filtered characterizing rate.
Abstract:
A computer-implemented method includes receiving a sequence of current spectra of reflected light from a substrate; comparing each current spectrum from the sequence of current spectra to a plurality of reference spectra from a reference spectra library to generate a sequence of best-match reference spectra; determining a goodness of fit for the sequence of best-match reference spectra; and determining at least one of whether to adjust a polishing rate or an adjustment for the polishing rate, based on the goodness of fit.
Abstract:
Methods of determining a polishing endpoint are described using spectra obtained during a polishing sequence. In particular, techniques for using only desired spectra, faster searching methods and more robust rate determination methods are described.
Abstract:
A method of operating a polishing system includes polishing a substrate at a polishing station, the substrate held by a carrier head during polishing, transporting the substrate to an in-sequence optical metrology system positioned between the polishing station and another polishing station or a transfer station, measuring a plurality of spectra reflected from the substrate with a probe of the optical metrology system while moving the carrier head to cause the probe to traverse a path across the substrate and while the probe remains stationary, the path across the substrate comprising either a plurality of concentric circles or a plurality of substantially radially aligned arcuate segments, and adjusting a polishing endpoint or a polishing parameter of the polishing system based on one or more characterizing values generated based on at least some of the plurality of spectra.
Abstract:
A method of operating a polishing system includes polishing a substrate at a polishing station, the substrate held by a carrier head during polishing, transporting the substrate to an in-sequence optical metrology system positioned between the polishing station and another polishing station or a transfer station, measuring a plurality of spectra reflected from the substrate with a probe of the optical metrology system while moving the carrier head to cause the probe to traverse a path across the substrate and while the probe remains stationary, the path across the substrate comprising either a plurality of concentric circles or a plurality of substantially radially aligned arcuate segments, and adjusting a polishing endpoint or a polishing parameter of the polishing system based on one or more characterizing values generated based on at least some of the plurality of spectra.
Abstract:
A substrate polishing system includes a platen to support a polishing surface, a carrier head configured to hold a substrate against the polishing surface during polishing, a light source configured to direct a light beam onto a surface of the substrate, a detector including an array of detection elements, and a controller. The detector is configured to detect reflections of the light beam from an area of the surface, and is configured to generate an image having pixels representing regions on the substrate having a length less than 0.1 mm. The controller is configured to receive the image and to detect clearance of a metal layer from an underlying layer on the substrate based on the image.
Abstract:
Methods, systems, and apparatus for spectrographic monitoring of a substrate during chemical mechanical polishing are described. In one aspect, a computer-implemented method includes storing a library having a plurality of reference spectra, each reference spectrum of the plurality of reference spectra having a stored associated index value, measuring a sequence of spectra in-situ during polishing to obtain measured spectra, for each measured spectrum of the sequence of spectra, finding a best matching reference spectrum to generate a sequence of best matching reference spectra, determining the associated index value for each best matching spectrum from the sequence of best matching reference spectra to generate a sequence of index values, fitting a linear function to the sequence of index values, and halting the polishing either when the linear function matches or exceeds a target index or when the associated index value from the determining step matches or exceeds the target index.
Abstract:
A polishing pad is described that has a polishing layer with a polishing surface, an adhesive layer on a side of the polishing layer opposite the polishing layer, and a solid light-transmitting window extending through and molded to the polishing layer. The window has a top surface coplanar with the polishing surface and a bottom surface coplanar with a lower surface of the adhesive layer. A method of making a polishing pad includes forming an aperture through a polishing layer and an adhesive layer, securing a backing piece to the adhesive layer on a side opposite a polishing surface of the polishing layer, dispensing a liquid polymer into the aperture, and curing the liquid polymer to form a window.
Abstract:
During chemical mechanical polishing of a substrate, a signal value that depends on a thickness of a layer in a measurement spot on a substrate undergoing polishing is determined by a first in-situ monitoring system. An image of at least the measurement spot of the substrate is generated by a second in-situ imaging system. Machine vision processing, e.g., a convolutional neural network, is used to determine a characterizing value for the measurement spot based on the image. Then a measurement value is calculated based on both the characterizing value and the signal value.