摘要:
A photolithography mask derivation process is provided for improving the overall planarity of interlevel dielectric deposited upon conductors formed by the derived photolithography mask. The photolithography mask is derived such that non-operational conductors are spaced a minimum distance from each other and from operational conductors to present a regular spaced arrangement of conductors upon which a dielectric layer can be deposited and readily planarized using, for example, chemical-mechanical polishing techniques. The resulting interlevel dielectric upper surface is globally planarized to an even elevational level across the entire semiconductor topography. The operational conductors are dissimilar from non-operational conductors in that the operational conductors are connected within a circuit path of an operational integrated circuit. Non-operational conductors are not connected within the integrated circuit path and generally are floating or are connected to a power supply. The non-operational conductors thereby do not contribute to the integrated circuit functionality other than to provide structural planarity to the overlying interlevel dielectric. The mask derivation process is applicable to either a metal interconnect photolithography mask or a polysilicon interconnect photolithography mask.
摘要:
A method of inspecting a lens includes projecting a first amount of radiation through a first test pattern and the lens to provide a first lens error associated with a first heating of the lens, projecting a second amount of radiation through a second test pattern and the lens to provide a second lens error associated with a second heating of the lens, and using the first and second lens errors to provide image displacement data that varies as a function of heating the lens. In this manner, corrections can be made for localized lens heating that is unique to a given reticle. The method is well-suited for photolithographic systems such as step and repeat systems.
摘要:
An integrated circuit is provided having an improved interconnect structure. The interconnect structure includes a power-coupled local interconnect which is always retained at VDD or VSS (i.e., ground) level. The local interconnect resides a dielectric-spaced distance below critical runs of overlying interconnect. The powered local interconnect serves to sink noise transients from the critical conductors to ensure that circuits connected to the conductors do not inoperably function. Accordingly, the local interconnect extends along a substantial portion of the conductor length, and is either wider or narrower than the conductor under which it extends. The local interconnect can either be polysilicon, doped polysilicon, polycide, refractory metal silicide, or multi-level refractory metal.
摘要:
Accurate determination of gate dielectric thickness is required to produce high-reliability and high-performance ultra-thin gate dielectric semiconductor devices. Large area gate dielectric capacitors with ultra-thin gate dielectric layers suffer from high gate leakage, which prevents the accurate measurement of gate dielectric thickness. Accurate measurement of gate dielectric thickness of smaller area gate dielectric capacitors is hindered by the relatively large parasitic capacitance of the smaller area capacitors. The formation of first and second dummy structures on a wafer allow the accurate determination of gate dielectric thickness. First and second dummy structures are formed that are substantially similar to the gate dielectric capacitors except that the first dummy structures are formed without the second electrode of the capacitor and the second dummy structures are formed without the first electrode of the capacitor structure. The capacitance, and therefore thickness, of the gate dielectric capacitor is determined by subtracting the parasitic capacitances measured at the first and second dummy structures.
摘要:
A method of forming a semiconductor device provides a gate electrode on a substrate and forms a polysilicon reoxidation layer over the substrate and the gate electrode. A nitride layer is deposited over the polysilicon reoxidation layer and anisotropically etched The etching stops on the polysilicon reoxidation layer, with nitride offset spacers being formed on the gate electrode. The use of the polysilicon reoxidation layer as an etch stop layer prevents the gouging of the silicon substrate underneath the nitride layer, while allowing the offset spacers to be formed.
摘要:
A method for forming a multilevel interconnect structure having a globally planarized upper surface. Dielectrics are deposited upon a semiconductor to minimize pre-existing disparities in topographical height and to create an upper surface topography having a polish rate greater than that of lower regions. Subsequent chemical mechanical polishing produces a substantially planar surface.
摘要:
An IGFET with metal spacers is disclosed. The IGFET includes a gate electrode on a gate insulator on a semiconductor substrate. Sidewall insulators are adjacent to opposing vertical edges of the gate electrode, and metal spacers are formed on the substrate and adjacent to the sidewall insulators. The metal spacers are electrically isolated from the gate electrode but contact portions of the drain and the source. Preferably, the metal spacers are adjacent to edges of the gate insulator beneath the sidewall insulators. The metal spacers are formed by depositing a metal layer over the substrate then applying an anisotropic etch. In one embodiment, the metal spacers contact lightly and heavily doped drain and source regions, thereby increasing the conductivity between the heavily doped drain and source regions and the channel underlying the gate electrode. The metal spacers can also provide low resistance drain and source contacts.
摘要:
An optical monitoring of electrical characteristics of devices in a semiconductor is performed during an anneal step to detect the time annealing is complete and activation occurs. A surface photovoltage measurement is made during annealing to monitor the charge state on the surface of a substrate wafer to determine when the substrate is fully annealed. The surface photovoltage measurement is monitored, the time of annealing is detected, and a selected over-anneal is controlled. The surface photovoltage (SPV) measurement is performed to determine a point at which a dopant or impurity such as boron or phosphorus is annealed in a silicon lattice. In some embodiments, the point of detection is used as a feedback signal in an RTA annealing system to adjust a bank of annealing lamps for annealing and activation uniformity control. The point of detection is also used to terminate the annealing process to minimize D.sub.t.
摘要:
An improved multilevel interconnect structure is provided. The interconnect structure includes several levels of conductors, wherein conductors on one level are staggered with respect to conductors on another level. Accordingly, a space between conductors on one level is directly above or directly below a conductor within another level. The staggered interconnect lines are advantageously used in densely spaced regions to reduce the interlevel and intralevel capacitance. Furthermore, an interlevel and an intralevel dielectric structure includes optimally placed low K dielectrics which exist in critical spaced areas to minimize capacitive coupling and propagation delay problems. The low K dielectric, according to one embodiment, includes a capping dielectric which is used to prevent corrosion on adjacent metallic conductors, and serves as an etch stop when conductors are patterned. The capping dielectric further minimizes the overall intrinsic stress of the resulting intralevel and interlevel dielectric structure.
摘要:
An improved multilevel interconnect structure is provided. The interconnect structure includes several levels of conductors, wherein conductors on one level are staggered with respect to conductors on another level. In densely spaced interconnect areas, interposed conductors are drawn to dissimilar elevational levels to lessen the capacitive coupling between the interconnects. By staggering every other interconnect line in the densely patterned areas, the interconnects are capable of carrying a larger amount of current with minimal capacitive coupling therebetween.