摘要:
Methods and apparatus for implementing thermal printing techniques onto thermally sensitive print media use one or more laser arrays to provide optical heating. Thermal management of the laser arrays is described. Techniques for alignment of multiple monolithic arrays onto a common carrier are described. Various output optics are described.
摘要:
A first portion of a top semiconductor layer of a semiconductor-on-insulator (SOI) substrate is protected, while a second portion of the top semiconductor layer is removed to expose a buried insulator layer. A first field effect transistor including a gate dielectric and a gate electrode located over the first portion of the top semiconductor layer is formed. A portion of the exposed buried insulator layer is employed as a gate dielectric for a second field effect transistor. In one embodiment, the gate electrode of the second field effect transistor is a remaining portion of the top semiconductor layer. In another embodiment, the gate electrode of the second field effect transistor is formed concurrently with the gate electrode of the first field effect transistor by deposition and patterning of a gate electrode layer.
摘要:
A method for forming an on-chip high frequency electro-static discharge device is described. In one embodiment, a wafer with a multi-metal level wiring is provided and a hermetically sealed gap is formed therein to provide electro-static discharge protection for an integrated circuit.
摘要:
A method for forming an on-chip high frequency electro-static discharge device on an integrated circuit is described. In one embodiment of the method, a capped first dielectric layer with more than one electrode formed therein is provided. A second dielectric layer is deposited over the capped first dielectric layer. A first hard mask dielectric layer is deposited over the second dielectric layer. A cavity trench is formed through the first hard mask dielectric layer and the second dielectric layer to the first dielectric layer, wherein the cavity trench is formed in the first dielectric layer between two adjacent electrodes. At least one via is formed through the second dielectric layer about the cavity trench. A metal trench is formed around each of the at least one via. A release opening is formed over the cavity trench. A third dielectric layer is deposited over the second dielectric layer, wherein the third dielectric layer hermetically seals the release opening to provide electro-static discharge protection.
摘要:
A design structure for an on-chip high frequency electro-static discharge device is described. In one embodiment, the electro-static discharge structure comprises a first dielectric layer with more than one electrode formed therein. A second dielectric layer with more than one electrode formed therein is located above the first dielectric layer. At least one via connects the more than one electrode in the first dielectric layer with the more than one electrode in the second dielectric layer. A gap is formed through the first dielectric layer and the second dielectric layer, wherein the gap extends between two adjacent electrodes in both the first dielectric layer and the second dielectric layer. A third dielectric layer is disposed over the second dielectric layer, wherein the third dielectric layer hermetically seals the gap to provide electro-static discharge protection on the integrated circuit.
摘要:
A disposable structure displaced from an edge of a gate electrode and a drain region aligned to the disposable structure is formed. Thus, the drain region is self-aligned to the edge of the gate electrode. The disposable structure may be a disposable spacer, or alternately, the disposable structure may be formed simultaneously with, and comprise the same material as, a gate electrode. After formation of the drain regions, the disposable structure is removed. The self-alignment of the drain region to the edge of the gate electrode provides a substantially constant drift distance that is independent of any overlay variation of lithographic processes.
摘要:
An LC tack structure. The structure, including a set of wiring levels on top of a semiconductor substrate, the wiring levels stacked on top of each other from a lowest wiring level nearest the substrate to a highest wiring level furthest from the substrate; an inductor in the highest wiring level, the inductor confined within a perimeter of a region of the highest wiring level; and a varactor formed in the substrate, the varactor aligned completely under the perimeter of the region of the highest wiring level. The structure may additionally include an electric shield in a wiring level of the set of wiring levels between the lowest wiring level and the highest wiring level. Alternatively, the inductor includes a magnetic core and alternating electrically non-magnetic conductive metal coils and magnetic coils around the core.
摘要:
Method and apparatus for achieving an intensity modulated electron blanker are disclosed. An apparatus includes a cathode exposed to an activation source to generate an electron beam. Cathode control circuitry adjusts a cathode control amplifier to regulate cathode voltage and the potential of the electron beam. In some approaches the electron beam potential is used to control the blanking frequency, switching speeds, and duty cycle. In another approach electron generating beams directed on to the cathode are modulated to control the electron beam.
摘要:
A method of fabricating a buried subcollector in which the buried subcollector is implanted to a depth in which during subsequent epi growth the buried subcollector remains substantially below the fictitious interface between the epi layer and the substrate is provided. In particular, the inventive method forms a buried subcollector having an upper surface (i.e., junction) that is located at a depth from about 3000 Å or greater from the upper surface of the semiconductor substrate. This deep buried subcollector having an upper surface that is located at a depth from about 3000 Å or greater from the upper surface of the substrate is formed using a reduced implant energy (as compared to a standard deep implanted subcollector process) at a relative high dose. The present invention also provides a semiconductor structure including the inventive buried subcollector which can be used as cathode for passive devices in high frequency applications.
摘要:
A heterojunction bipolar transistor is formed in a semiconductor substrate of a first conductivity type including a collector region. A base region is formed on the substrate and an emitter region is formed over the base region. At least one of the collector, base and emitter regions includes a first region doped with an impurity having a first concentration and a second region doped with the impurity having a second concentration. Noise performance and reliability of the heterojunction bipolar transistor is improved without degrading ac performance.